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This work is part of the ESA Swarm-SWITCH (Space Weather in the lonosphere-Thermosphere a0 ) ature B GRC.3 50 (o) Nature un GOC &
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thermosphere-ionosphere using in-situ satellite observations and models, which can be accessed
via spaceweather.knmi.nl/viewer.
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mode decomposition aims to find the best linear approximation. Here u € R can be 3 staggered Table 2: The mean percentage-deviation A [%] of the DEN assimilation experiments relative to the NR
collection of length | with several drivers such as Kp index and Fqp7 solar flux. The focus is to
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computationally efficiently via the Singular Value Decomposition (SVD). Then the reduced-order
f : 0 1is o b following: GDC-01 9.9 7.8 66.2 10.0 11.1 63.6
orm ot equation 1 is given by the tollowing: GDC-02 100 8.1 65.7 10.0  10.4 63.2
%1 = A% + Buy. (2) GDC-03 10.0 8.2 66.7 100 107 63.5
- o _ GDC-04 10.0 3.1 67.4 10.0 12.1 64.0
-igure 2 presents the error characteristics of the TIE-FGCM-DMD. The figure shows that at a GDC-05 10.0 8.2 67.8 100 133 64.9
arge truncation order of 500 the difference between the two models becomes significantly small. GDC-06 10.0 8.4 67.6 10.0 134 64.9
nterestingly, the standard deviation for the electron density is relatively larger than that for the Swarm-A 10.0 5.0 65.3 10.0 146 62.7
neutral mass density. This may indicate that the variations in the electron density are controlled swarm-C 10.0 >1 05.8 100 147 02.7
by much more nonlinear components in the physical model compared to the neutral mass density.
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We conduct several OSSEs for two case studies: . . 0.305 = swarm | = Swarm
the November 4, 2021 major geomagnetic storm S T R < 025~ -
(Nov2021), and the February 3, 2022 Starlink g 70 :
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run (NR). Synthetic observations are generated

by adding a noise term to the estimates from the Figure 3: North polar orthographic view of the ground Figure 7: The RMSE of the (a-b; column-left) Ne (a-b; column-right) DEN assimilation experiments relative to the

% track configuration of (left) Swarm and (right) simulated ~ NR. The results correspond to the average RMSE considering all six satellites in the GDC (dotted-bar) constellation
GDC satellites. and Swarm-A and -B satellites (plain bar).

Tables 1 and 2 summarise the OSSE performance. We demonstrate the ability to perform OSSEs
with the Swarm and GDC constellations. The results show that the use of both Ne and DEN
synthetic observations can significantly improve the background model. The results highlight that
the assimilation of DEN reduces the error in the background model more than that of Ne. The
synthetic observations are assumed to be error free during the assimilation. The results show that
the assimilation scheme performs equally well under quiet and storm conditions.

NR (a random percentage between 1 and 20

of the original NR).
Synthetic observations of both the electron density (Ne) and the neutral mass density (DEN) are

assimilated into the new TIE-GCM-DMD using the Kalman filter technique. The observations are
assimilated with no assumption of error and the assimilation window is 90 minutes.
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Table 1: The mean percentage-deviation A = L Z, . (

100) of the Ne assimilation experiments
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Observation Analysis TIE-GCM Observation Analysis TIE-GCM T-hi m?ln advantagbeI ofT_I;]IE—_GC!:C/.I —DI\/ID.ls.the comput.atlon. tlm.e .compared to data e:jssumlatlon
GDC.01 10.0 13.9 10 8 10.0 154 574 W|t a large ens.errT e.. e signiticant gain |.n compl.Jtat_lon time Is iImportant to ext.en t_ e ca.pa—
CDC-02 100 115 403 100 163 56.6 bility of the assimilation scheme to forecasting applications. The TIE-GCM-DMD is a linearised
GDC-03 10.0 32.8 157.3 10.0 1094 733.9 coupled model, and thus can be directly integrated into 4D-Var assimilation schemes with ease,
GDC-04 10.0  10.7 49.3 10.0 423 181.7 which is a challenge for large nonlinear geophysical models. The effect of allowing for observation
GDC-05 10.0 104 40.4 100 18.0 83.2 error in the assimilation must be investigated. Further work is required to investigate the stability
GDC-06 10.0 10.3 44.1 10.0 19.9 92.3 :
of the coupled neutral and plasma states in TIE-GCM-DMD.
Swarm-A 10.1 10.2 58.2 10.1 19.8 144.8 Reference:
Swarm-C 10.0 9.8 55.4 10.0 20.4 143.7 '

Kodikara, Timothy (2023). The open time-series of the high-resolution ionosphere-thermosphere
Figures 4 and 5 show the improvement to the electron density state of TIE-GCM as a result of aeronomic climate simulation (OTHITACS). World Data Center for Climate (WDCC) at DKRZ.

data assimilation (panel c: Analysis). The two figures highlight that the improvement is better https://doi.org/10.26050/WDCC/OTHITACS _tiegem
along the GDC-06 satellite compared to GDC-03.
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