

FORTY: A Benchmark for Forest Type Mapping and Geospatial Foundation Models

ESA-NASA International Workshop on AI Foundation Model for EO 6 May | ESA-ESRIN | Frascati, Italy

Yuchang Jiang, Maxim Neumann

Introduction

Where are the forests?

FAO's definition: ...trees higher than 5m...canopy cover more than 10%...

⇒ focus more on forest coverage: forest vs non-forest

Besides 'where', what kinds of forests?

Forest classes: natural forests, planted forests, tree crops...

⇒ focus more on detailed forest type mapping

- + Better deforestation risk and degradation monitoring
- + Better biodiversity monitoring
- + support for EU Deforestation Regulation (EUDR) compliance

. . .

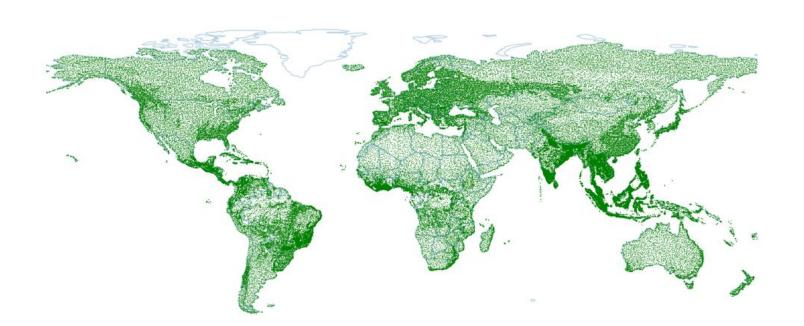
so we propose

FORTY: a DL benchmark for forest type mapping

FORTY Dataset

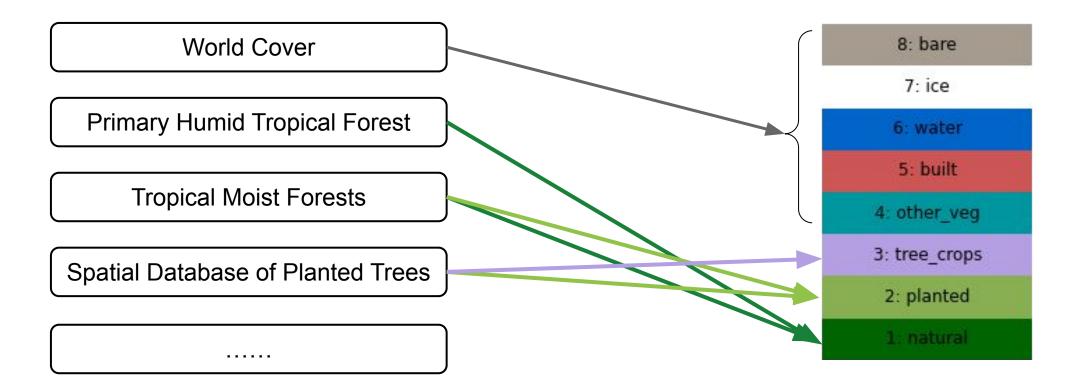
a global-scale multi-modal multi-temporal DL benchmark

- 200,000 samples with 1280m x 1280m coverage at 10 m resolution
- annotated with per-pixel labels
- classes
 - forest classes: (1) natural forest, (2) planted forest, (3) tree crops
 - o non-forest classes: (4) other vegetation, (5) built, (6) water, (7) ice, (8) bare ground



Collect and merge diverse publicly available data sources

some main data sources:



FORTY Dataset: satellite data

Sentinel-2:

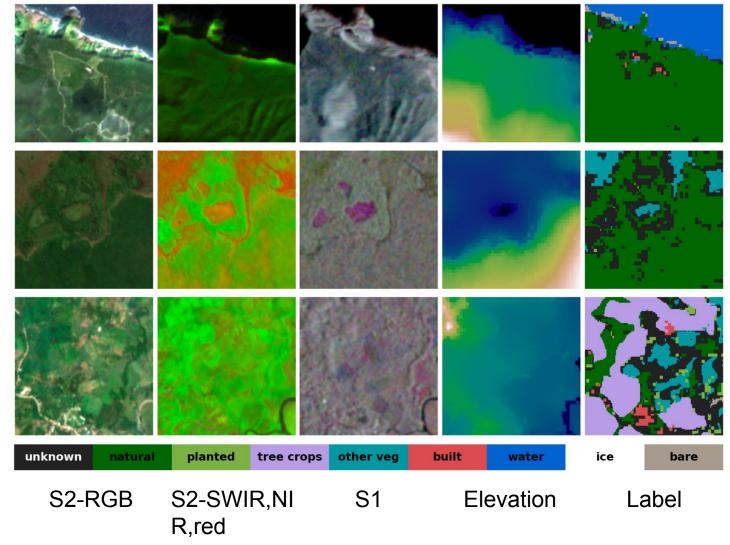
- 10m resolution
- monthly/seasonal/yearly in 2018-2020
- Sentinel-1:
 - 10m resolution
 - monthly/seasonal/yearly in 2018-2020

Climate (TerraClimate [1]):

- ~4km resolution
- monthly/seasonal/yearly in 2018-2020

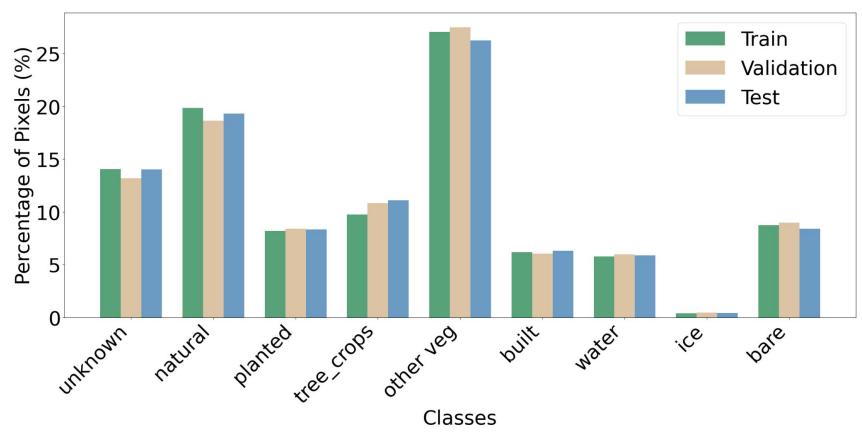
Elevation (FABDEM [2]):

- 30m resolution
- non-temporal dataset



FORTY Dataset: dataset analysis

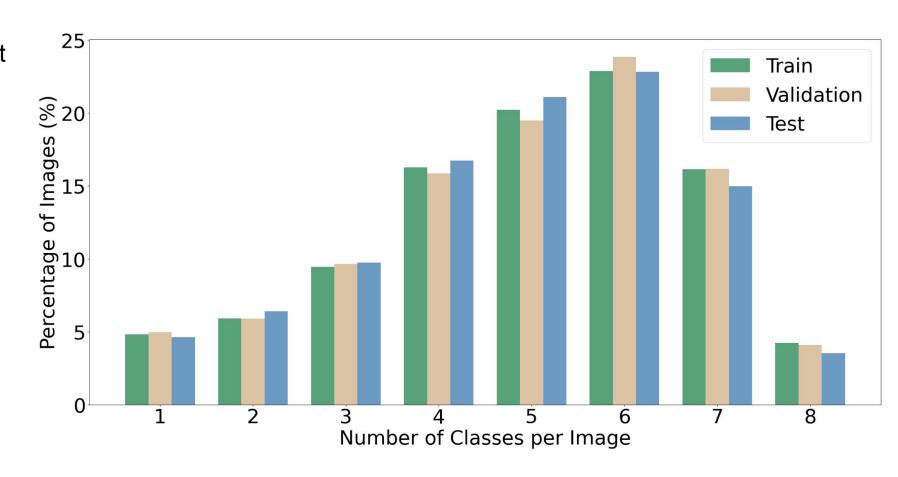
- Geographically split the dataset into train:val:test = 8:1:1
- Classes distribution
 - balanced at sample-level
 - imbalanced at pixel-level⇒



Distribution of Classes at Pixel-Level

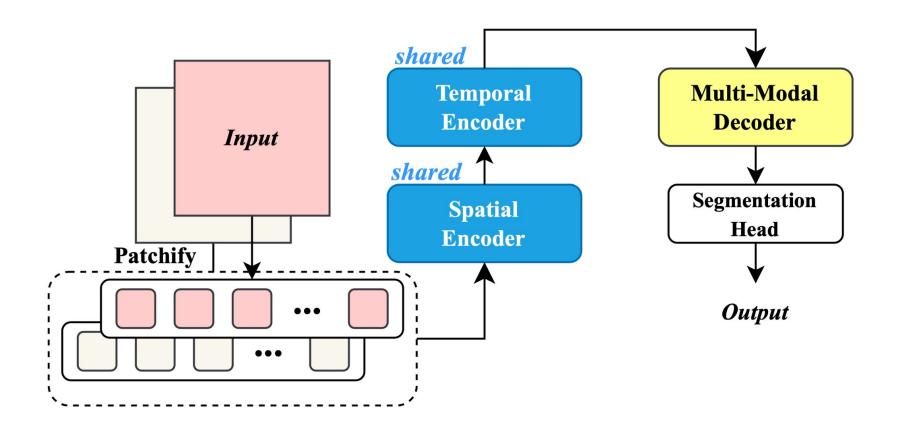
FORTY Dataset: dataset analysis

- Most samples contain at least
 4 different classes
- Provide rich segmentation labels for model training



MTSViT Model

Multi-modal Temporal Spatial ViT (MTSViT)



Experiment Results

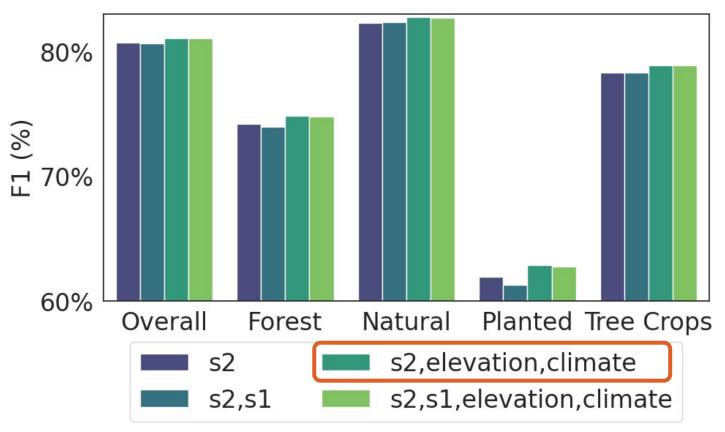
- inputs: seasonal Sentinel-2, climate, and elevation from 2020
- baselines: UNet3D[3], UTAE[4], TSViT[5]

TABLE I: Results (F1 score and standard deviation) on the fest set using Sentinel-2, climate, and elevation data over 1 year: (Overall), for the 3 Forest classes, and for the individual classes: natural (N), planted (P), and tree crops (TC).

	Overall	Forest	N	P	TC
UNet3D	32.4 (1.3)	24.2 (5.3)	56.2 (8.3)	7.5 (8.8)	8.8 (12.1)
UTAE	49.4 (0.8)	37.7 (5.0)	71.4 (0.0)	13.8 (5.4)	27.8 (9.6)
TSViT	79.6 (0.1)	73.1 (0.1)	81.8 (0.0)	60.2 (0.3)	77.5 (0.2)
Ours	81.1 (0.1)	74.9 (0.1)	82.8 (0.0)	62.9 (0.3)	78.9 (0.2)

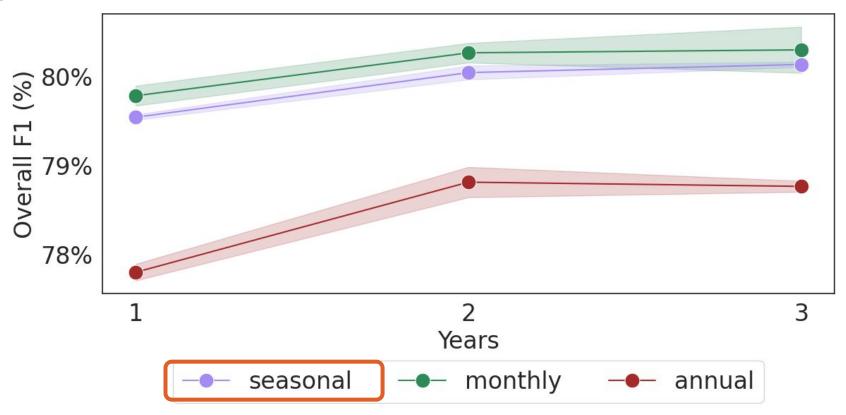
Experiment Results

- inputs: seasonal Sentinel-2, Sentinel-1, climate, and elevation from 2020
- multi-modality ablation based on MTSViT



Experiment Results

- inputs: monthly or seasonal or annual Sentinel-2 data from 2018, 2019, 2020
- multi-temporal ablation based on MTSViT



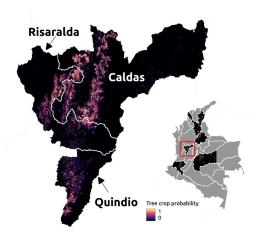
Applications of FORTY?

summary

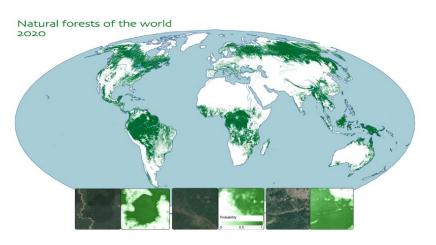
- global-scale, 200k samples, per-pixel label
- multi-modalities: Sentinel-2, Sentinel-1, Climate, Elevation
- temporal: monthly, seasonal, yearly in 2018, 2019, 2020

- testbase of geospatial models
- contribute to forest related applications,
 e.g. already contributed to our other works

A High-Resolution **Tree Crop** Map of South America



Natural Forests of the World – A 2020 Baseline for Deforestation and Degradation Monitoring



Stay tuned!

FORTY Benchmark

- dataset release (github.com/google-deepmind/forest_typology_)
- evaluation on more geospatial foundation models

Code Framework

- JEO: model training and inference for geospatial remote sensing in JAX (github.com/google-deepmind/jeo)
- GeeFlow: geospatial dataset generation with GEE (github.com/google-deepmind/geeflow)

Applications and Maps

- A High-Resolution Tree Crop Map of South America (under review)
- Natural Forests of the World (under review)

Contact details

yuchang.jiang@uzh.ch maximneumann@google.com

References

- 1. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12.
- 2. Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., & Neal, J. (2022). A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters, 17(2), 024016.
- M Rustowicz, R., Cheong, R., Wang, L., Ermon, S., Burke, M., & Lobell, D. (2019). Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition workshops (pp. 75-82).
- 4. Garnot, V. S. F., & Landrieu, L. (2021). Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4872-4881).
- 5. Tarasiou, M., Chavez, E., & Zafeiriou, S. (2023). Vits for sits: Vision transformers for satellite image time series. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10418-10428).