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A. Spilhaus’ projection of the world
oceans reveal the centrality of the
Southern Ocean.

A global thermohaline circulation
connects all basins, with upper-layer
flow in red and lower-layer flow in
blue.

From Meredith (2019)
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Antarctica contains about 2/3 of all fresh
water on earth, or 50 m sea level.

80 % of all Antarctic mass loss is
drained through floating ice shelves

Ocean area
covered by 100 m *
to 2 km thick

floating glacier ice B Galton-Fenzi (2012)

Courtesy R. Drews
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1. Heat transport from deep
ocean to coast
«slope front» dynamics

heat loss and water mass
transformation on the shelf

coupling to large scale climate

Atmosphere

Circumpolar deep water ‘




increasing since 1950s

more on instrumented seal data on meop.net

Southern Ocean hydrographic data distribution continiously

deployed by
many nations,
since late 2000’s

Jourdain et al.
2020



Updates comming

July - September
Total: 79211

CTD: 2182

Argo: 77029

December - Fabruary
Total: 99750
CTD: 18588
Argo: 81162

8 Zhou et al., (in prep] 80

continiously

deployed by
% 2 many nations,
7o, since late 2000’s
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Different processes dominate different shelf regimes

Net freshwater import | _cold, fresh
Net freShWater @ | / warm, saline

s

yideq

Distance from coast

wind driven Ekman
overturning
causes freshening on

. linit
INnCreases Ssalinity and the shelf and

drives full-depth
convection on the shelf.
Ice shelf melting
causes further cooling
and freshening.

regulates
cross-shelf fluxes and
thermocline depth.

Thompson et al., 2019, Rev. Geophys. "
I \Warm shelf s Fresh shelf . Derise shelf



Different processes dominate different shelf regimes
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drives full-depth
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Ice shelf melting
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9- Thompson et al., 2019, Rev. Geophys. ™ Net ice—ocean freshwater flux (m yr)
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Different pr
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dense water
- formation

{ 3 %
2

Sea ice production
increases salinity and
drives full-depth
convection on the shelf.
Ice shelf melting
causes further cooling
and freshening.

-, . Ccryotoons!
Glacial meltwater from East Antarctica may
help drive warm water inflow to ice shelves in
West Antarctica.

From Matt Hoffman @LosAlamosNatLab at
#WAISworkshop

And they interact...

3'&'(;!.0],
(echening heve " melbwajer
allows for (OW
nélow fo

the | shelf

£ilclhwner-
Konn€&

Hoffmann et al. 2024
https://doi.org/10.5194/tc-18-2917-2024
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convection on the shelf.
Ice shelf melting
causes further cooling
and freshening.

... Ccryotoons!
@cryotoons

eltwater from East Antarctica may

e warm water inflow to ice shelves in

tarctica.

att Hoffman @LosAlamosNatLab at

orkshop

...and with
circulation
feedbacks
e.g. Chen
et al. 2023

And they interact...
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Hoffmann et al. 2024
https://doi.org/10.5194/tc-18-2917-2024
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"Pine Island Glacier
Jenkins et al. (2010) L
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Future
changes?
Long-term E
observations &
are key! S
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Bathymetry
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(a)
(b)
(c)

“Warm” oceans eroding ice shelves from below

reduced sea ice

Weakened coastal current (Lauber et al. 2023)
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Reveraling large-scale patterns
and teleconnections

Pritchard et al. (2012)
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P2: Aim for long-term observatories as a
legacy from InSync (seconding Silvano)
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2. Sub-ice shelf processes
local circulations / tides

Atmosphere

Circumpolar deep water

small scale topogrpahy / «melt-
channels»

MISI & «grounding line problem»




Fimbulisen: Ngst et al. 2004
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Seismic reflection
measurements were
conducted at 183 stations
covering most of the ice shelf.

Basic needs:

Bathymetry source

[ |

General (sub ice-shelf) bathymetry:

«All ice shelf areas within the red outline [...]
were then reinterpolated using kriging...»



P3: Improve
sub-ice shelf
bathymetry
wherever
possible

2010 EWS/DML geometry
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~50 water coulmn thickness beneath all other ice shelves but Fimbulisen, really?!

Bottom topography is urgently needed!

(and luckily there have been updates since 2010, but still not enough)
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Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and
from that melt rate.

Time series of interannual, seasonal
and sub-seasonal changes
Validation of satellite products
Detect coherent patterns from
distributed observatories
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Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and
from that melt rate.

I Yet another Fimbulisen example:
L. M2 ApRES (Lindbdick et al., in review)

- Time series of interannual, seasonal
and sub-seasonal changes

- Validation of satellite products

- Detect coherent patterns from
distributed observatories

Satellite
| H.
=¥ product

sees more
E‘ surface

" seasonality,
than melt
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Phase sensitive radar (ApRES)

Measuring ice shelf thinning rate, and
from that melt rate.

- Time series of interannual, seasonal
and sub-seasonal changes

- Validation of satellite products

- Detect coherent patterns from
distributed observatories

Ideally paired with heat flux
measurements beneath the ice

z

Concurret temperature
and velocity profiles
beneath the ice are
crucial but do nearly
not exist



To improve basal melt
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Ideally paired with heat flux
measurements beneath the ice
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To improve basal melt ——
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thermal driving [degC]

To improve basal melt
parameterizations:

Log10 data counts 2.0
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observed ablation rate [m/yr]
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InSync on melting ice shelves
and coastal impacts

1: Leverage mapping of coastal

- hydrography and seasonality (Argo++)

:_‘_‘ "_' 2: Aim for a legacy of long-term
*_'_ observatories (think “SO-DBO”)

e

~ 3: Improve sub-ice shelf bathymetry Sk R L o — =
wherever possible s BN G ikl e —

4: Extend the ApRES melt rate radar
network around the continent
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