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Fig. 4.  A simplified 
view of our ConvNet 
architecture: two 
alternating  CONV 
and POOL layers, 
and one FC layer.

flattening
Softmax

4-neuron 
output vector

INPUT

Convolution + ReLU
Max Pooling Convolution + ReLU

Max Pooling

Stage 1 Stage 2

Fully Connected

𝑥 = 𝑎[0]

Stage 3

𝑎[2] 𝑧[3] 𝑎[3]

𝑎[1]

Convolutional Neural Nets

• Based on regular neural nets. They are trainable architectures of multiple 
stages. Each stage is composed of two major layers: convolutional & pooling. 

- Convolutional Layer (CONV): a number of trainable filters perform 
discrete convolution operations on local patches of the input wrt its 
dimensions. Layer’s hyper-parameters: filter size f , stride s.

- Pooling Layer (POOL): merges semantically similar features into one 
(LeCun et al., Nature, 2015). It takes small rectangular blocks from the 
CONV layer and subsamples it.

- Fully Connected Layer (FC): the output of the topmost CONV layer is 
converted to a 1D feature vector (flattening). The top layer is fully 
connected, with one output unit per class label (Ciresan et al., IJCAI-11, 
AAAI Press, 2011).

Fig. 2. The two major processes 
in a ConvNet (in 2-D): 

convolution & max pooling

Proposed 
Methodology

Layers Details

Conv1 8 filters, f = 4, s = 1

Pool1 f = 8, s = 4

Conv2 16 filters, f = 2, s = 1

Pool2 f = 4, s = 4

FC 4-neuron output

• Data used: total magnitude, Swarm-C, VFM, NEC frame, 1s sampling rate 
(MAGX_LR_1B Product),  for February, March & April of the year 2015.

• Number of total samples: 2620 samples, manually annotated in 4 classes

• Input: pairs of wavelet images & their annotation (class label)

• Training / Test set split: 80% / 20% of total samples

• Parameter initializer: Xavier Initialization

• Activation functions: ReLU, Softmax

• Cost function: Cross-entropy (Log Loss)

• Optimizer: Adam Optimization (training for 100 epochs)

Conclusions

✓Accuracy on the training set (2096 samples) =  98.3%
✓Accuracy on the test set (524 samples) =  97.3%
✓Heidke Skill Score (HSS) = 96.2%
✓Comparing with the popular k-Nearest Neighbors (kNN) and the very 

competitive Support Vector Machines (SVM) classifiers: kNN (k=5, p=1) = 57.5%,   
SVM = 88.1%   →  ConvNet gives the best results with the highest accuracy.

✓The methodology could be applied to investigate:
➢ other frequency ranges (Pc1/EMIC, Pc2, Pc4, Pc5)
➢ observations from other satellite missions
➢ ground-based observations

Network’s Architecture

Fig. 3. The 4-class classification problem (Balasis 
et al., 2019):
1st class (“Events”): existence of Pc3 (22-100 
mHz) ULF wave events;
2nd class (“Background noise”):  background 
noise without significant wave activity; 
3rd class (“False Positives”): artificial signals 
that exhibit wave power in the Pc3 range; 
4th class (“Plasma Instabilities”): or “plasma 
bubbles”, attributed primarily to Equatorial 
Spread-F events (ESF).
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Results

Fig. 5. Confusion 
matrix and 
Precision & 
Recall for each 
class of the test 
set. The 
confusion matrix 
is almost 
diagonal.

Training of the Network (Antonopoulou et al., 2022)

Smaller windows in time:
• cut each time series per satellite track;
• keep only low & mid-latitudes (±45°)

External residual (Subtract 

CHAOS-6 model (internal part) 
from Swarm raw data)

Swarm Time Series, 
raw data

Apply high-pass filter
• cut-off = 22 mHz

Wavelet-transformed 
series

ConvNet

Fig. 1.  Basic model of an 
artificial neuron (bottom), and 
basic architecture of a Neural 

Net (right).
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