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KP Labs is a new space company in 
Gliwice, Poland

Ab o u t  u s

We create space grade hardware, software, 
and ML models for Earth observation and 
satellite telemetry.

www.kplabs.space

http://www.kplabs.space/
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Da t a s e t s
Compiling a dataset for task-driven SR training
Dataset features
 90 scenes in total (72 training, 9 validation, 9 tests)
 Scenes with sizes over 1000×1000 pixels
 SR Data per scene (from MuS2 dataset):

 Multiple LR Sentinel-2 images
 HR WorldView-2 image (downsized)

 Multiple overlapping S-2 and WV-2 modalities but we mainly work 
with NIR

 Task-oriented data per scene projected onto WV-2 (from Open 
Street Map):
 Buildings segmentation masks
 Roads segmentation masks

Dataset versions
 Real-world data (WV-2 and S-2 images) → challenging dataset, low 

temporal consistency
 Simulated data (WV-2 and LR images simulated from WV-2 using S-2 PSF 

and downsampling) → easier dataset, high temporal consistency

WorldView-2
HR imageSentinel-2

LR images
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Da t a s e t s
Visual preview of 
the compiled 
dataset
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Tr a in in g  t a s k  m o d e ls
For the future task-driven SR trainings

 Task scenarios: roads and buildings 
segmentation

 We train on the demonstrated dataset with 
consistent train/val/test split in all (trainings 
tasks and SR)

 We use Unet++ architecture
 Training in patches, evaluation on complete 

scenes
 Dice loss (1 – dice score)

Test metrics
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Ta s k - d r iv e n  SR t r a in ig s
Considerations and goals for the experiments

Aspects to consider in the trainings:
 Establish SR baseline (conventional training with cL1 loss)
 Try to train SR with task-driven loss only (unlikely to succeed)
 Introduce training with cL1 and a single task-driven loss weighted:

 Investigate how a single task-driven loss training (e.g. buildings segmentation) impacts segmentation results 
for a different task

 How to weight multiple losses (e.g., cL1 and segmentation dice?)
 Static weighting (weighted sum with fixed weights)
 Dynamic weighting (fixed proportion between losses, weights updated on each epoch end to keep the 

given proportion in regard to a reference loss)
 Train with conventional SR loss and multiple task-driven losses
 Utilize segmentation information for patches selection (prioritize training patches with roads & buldings presence)
 Try fine-tuning options (e.g., train with traditional loss, fine-tune with task-driven)
 Investigate training on simulated (temporally consistent) vs real-world data (less temporally consistent)
 Compare MISR (RAMS) vs SISR (HAT) networks with task-driven scenarios
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Ex p e r im e n t s  a n d  r e s u lt s  fo r  MISR
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Ex p e r im e n t s  a n d  r e s u lt s  
fo r  SISR
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Vis u a l r e s u lt s Task-driven trainings
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Vis u a l r e s u lt s
Close-up, baseline vs task-driven RAMS training on real-world data

11 (baseline) 15 (task-driven)
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Re s u lt s
Perspectives on task-driven training and evaluation of SR networks

 Conventional SR networks may not produce SR results sufficient for further processing out-of-the 
box

 Task-driven trainings improve segmentation results on test data a lot
 Various tasks seem to improve congruently with task-driven training
 Methods like dynamic loss weighting and patches selection improve results
 Works for SISR and MISR, MISR seems to benefit more from task-driven trainings
 Task-driven trainings make more significant impact when training on challenging real-world data
 Task-driven trainings lead to more distinct man-made structures in real-life data
 Methods to be expanded and developed further, especially in the context of foundational models 

(both SR and task ones)
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Th a n k  y o u

www.kplabs.space
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