

Using Machine Learning to Identify Air Pollution Plumes from EO Data

Douglas Finch & Paul Palmer, University of Edinburgh

ESA UNCLASSIFIED – For ESA Official Use Only

· 🚍 💶 📕 🚛 🚍 📕 🗮 드 📕 📕 🚍 📲 🔚 🔤 👘 🔤 🔤 🚱 🔽 🚺 🗮 🚍 🐨 🚱 🚱 👘 👘

Introduction

- Emission inventories can be temporally and geographically crude.
- Satellites can provide information about atmospheric concentrations more quickly than emission inventories are updated
- Can we develop machine learning models to identify pollution plumes, therefore informing us about emissions on a near real time basis?

Objective

- Develop a database containing plume information for SO₂, NO₂ and CH₄

Data Use

- We use TROPOMI level 2 data to develop three machine • learning models (for SO_2 , $NO_2 \& CH_4$).
- $NO_2 \& SO_2$ products have a spatial resolution of 3.5 x 5.5 km. • CH_4 has a resolution of 5.5 x 7.5 km.
- Near global coverage on a daily basis.
- TROPOMI swath is split into 32 x 32-pixel images
- Each image has the standard TROPOMI QA applied and is • normalized.

Developing Plume Detection Models

- All three models are U-Net style with similar architecture
- Allows the model to detect patterns in the image and build a plume mask the same shape as the input image
- The entire TROPOMI swath is rebuilt by merging the predicted masks

Input Image

Model Output

- We store plume location, time, predicted boundary, species concentration and wind data (among other metrics)
- Plumes can be nearly any shape or size (some filters applied)
- Ran the detection model from May 2018 July 2023

Species	Number of Plumes	
SO ₂	67,317	
CH_4	8,057	
NO ₂	116,743*	(*Only 2021)

Example plumes and masks

H HE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

SO₂ Global Map

Precision: 0.81 Recall: 0.79

*

+

= = || += = = || || ±= = || || || = += = || || || || → || || += = = || || || || += = = || || || += += || +| || → THE |

NO₂ Global Map

Precision: 0.77 Recall: 0.75

*

+

Estimating Emission Rates

- We can estimate an emission rate associated with each plume based on the predicted boundary and wind data
- Wind data used is 10 m U & V wind fields from ECMWF (included in the TROPOMI files)

💳 🧮 👫 💳 💳 🚛 🚛 🚛 🚛 🚺 📕 💳 👫 💳 🛶 🚳 🖕 📲 👫 🛨 🖬 ன ன 🖬 ன ன ன 👘

Case Study – HCHO:NO₂ Ratios

- HCHO:NO₂ ratio can tell us about the photochemical environment
- HCHO values can be extracted from plume locations
- 86 plumes over Alexandria, Egypt

 large port
- The larger the emission rates (possibly more shipping emissions?) increases the HCHO:NO₂ ratio

Case Study – CH₄ from Oil Fields

- We can see clusters of methane plumes from a known oil field in Turkmenistan.
- Although there is also noise about, some of it lines up with other smaller oil fields

Data Availability – eoplumes.com

Sulphur Dioxide Plume Map

This map shows the initial results for the SO_2 plume found through the model. Volcanoes are shown in red

Improvements to this model are ongoing to refine the plume location and filter erroneous results.

- All this data will be available on our project website
- Site is currently out-ofdate
- Latest data will be published later in the year
- Zoomable maps, quick look statistics and downloadable data will be available

Summary

- We've created promising plume detection models for SO₂, NO₂ and CH₄
- The models results gives us confidence that they are doing what we expect (although there is always room for improvement)
- The workflow created allows to go from swath to emission estimates in around 30 seconds
- This database will be available to all later in the year we'd like the community to be able to use this information in new and innovative ways

Thank you – any questions?

Extra slides

━ ═ ▮ ╂ ═ ━ ┇ ║ ╧ ━ ║ ║ ━ ╬ ━ ┛ ◙ ▶ ║ Ж ╂ 단 = ═ ヱ ѿ ヱ № →╖

Plume Labelling

• • • • • • •		127.0.0.1	C		₾	+ (
Solid Starts - First 100 Days (7).pdf	lome - OneDrive		umes_PM3.pptx	Plume Annotator		
	Plume	Annotation				
	Draw arou	nd the plume in the image:				
		lumes Inspected:				
		SOL				
		Plumes Found:				
		422 False Postives:				
		32				
		Se				
	SAVE OUTLINE(S)	NO PLUME SK	IP			

- Created an app to run locally
- Went through images and draw round plume shapes
- Showed location of plume alongside image as a sanity check
- Saved drawn outline as binary mask for model training

Separating Biomass Burning

 Where a plume boundary contains a detected fire from VIIRS or MODIS on the same day – classify as BB

Detection Limits (NO₂)

- Model works on shapes and gradients and therefore relies on how well a plume stands out from the background, not absolute concentration
- We can compare the median background to the median concentration within the plume to get an idea of normal plume enhancement

4000 Median Plume Enhancement = 46.5%3500 3000 2500 2500 2000 1500 1500 1000 500 0 20 40 60 80 100 NO₂ Plume Enchancement (% over background)

Minimum enhancement = 3% enhancement 1st percentile enhancement = 16% enhancement