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Copernicus Satellite Sentinel-5 Pre'(_:_u_rsor (S5P) and Sentinel-4 (S4) @esa

Sentinel-4 (S4) and Sentinel-5 Precursor (S5P) are passive earth observation satellites for trace gas retrieval of the Copernicus programme:

Sentinel-4 Sentinel-5 Precursor

launch date in 2025 "' . launched in october 2017

geostationary orbit facing europe sun synchronous orbit at ~ 820 km
spectral range: UV/VIS/NIR spectral range: UV/VIS/NIR/SWIR
spatial resolution: 8 km x 8 km spatial resolution: 5.5 km x 3.5 km

A requirement for trace gas retrieval is accurate cloud information
- DLR is responsible for the operational CLOUD product

= Large amounts of data
= Near real time requirements (NRT)
- Application of machine learning techniques to improve performance compared to classical algorithms
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Application of neural networks

Problem:

Find parameters x that minimize residual ||F(x) — y||, between a known vector y
and the mapping of the parameters F(x) — where F is a predefined function

in remote sensing:
x: state of atmosphere, y: measured spectrum, F: radiative transfer model (RTM)

Two approaches:

1.

2.

NN as forward model of a spectral fitting algorithm:
» F:X — Y state of atmosphere — spectrum
= substitutes and approximates the RTM
= gradients (w.r.t to retrieval pamareters)
usually need to be provided for solver
called in each iteration

NN for direct inversion:
= F~L.Y - X, spectrum — state of atmosphere
= F~1lis generally unknown,
can only be inferred through samples
No gradients needed after learnnig
called only once

Observed and fitted spectrum

Inversion with RTM as Forward Model

Forward Model

Inversion with NN as Forward Model

Forward Model
=Nl g |

calls forward model
e

spectra, viewing geometry,
surface information

calls forward model
intl convergence

Outputs:
cloud parameters

+ THE EUROPEAN SPACE AGENCY




NN as forward - model

1. How to get from RTM to NN?

- NN Lifecycle chain:
General procedure to replace RTM
of an inversion algorithm by a NN

2. Finding optimal NN configuration
is challenging, there are many
aspects to consider:

NN topology
activation functions
dataset sampling
learning algorithm

Training a NN from the RTM
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Error Histograms for generated S5P spectra
16000 validation samples

fully-cloudy rel. error abs median: 1.582 %
1200 clear-sky rel. error abs median: 0.62 %
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Spectral fitting-challenges

With a NN as forward model, a spectral fitting algorithm can be used for the retrieval of the atmospheric parameters

However, this is still challenging:

» spectral fitting problem is generally ill-posed
- local minima

= real data contains noise in measurements
- ROCINN algorithm (part of the operational CLOUD product) uses Tikhonov Inversion, which adds a regularization term to the problem
For difficult cases, good a-priori values for the retrieval parameters are still important:

Residualmap against reference with changes in CTH and COT Residualmap against reference with changes in CTH and COT
reference: SH: 0.0, SA: 0.6, CTH: 8.28, CGT: 1.0, COT: 13.843, SZA: 10.0, VZA: 10.0, RAA: 18% reference: SH: 0.0, SA: 0.95, CTH: 2.68, CGT: 1.6, COT: 9.298, SZA: 10.0, VZA: 10.9, RAA: iﬂ&
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NN for direct Inversion

= NN for direct inversion can avoid some of the issues of the spectral fitting:
» no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for convergence, etc.),
all settings via the hyperparameters and training of the network
no a-priori necessary
only one call (iteration) per problem

» |nput: spectra, viewing geometry, surface parameters, Output: cloud parameters
(topologies: NN as FM: 7-66-77-26-89-78-94-99-107, NN for direct inversion: 112-80-80-80-80-2)
= Evaluation on validation dataset:

Error Histograms for retrieved cloud top height Error Histograms for retrieved cloud optical thickness
10000 validation samples 10000 validation samples

forward model RTM rel. error abs median: 1.877 % g forward model RTM rel. error abs median: 8.886 % e
2500 forward model NN rel. error abs mediin: 2.459 % forward model RTH forward model NN rel. error abs median: 17.057 % forward model RTM

direct inversion rel. error abs median: 0.492 % forward model NN direct inversion rel. error abs median: 8.351 % forward model NN
@ direct inversion mmm direct inversion
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—> Best results for cloud top height: 0.49% vs. 2.46% (NN as FM), 1.88% (RTM as FM)
—> Best results for cloud optical thickness: 8.35 % vs 17.06% (NN as FM), 8.89% (RTM as FM)
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Uncertainty Quantification

= Drawback: No indication for the quality of the results for the direct inversion NN (,blackbox*) s 2 o

5 spectra components as input, (20, 20, 20) hidden layers, 10000 validation samples

* |n contrast to the spectral fitting with e.q. iterations, convergence, residual, etc. Go% TeL. arvor abs medion: 10,806 f| o CLoud top height (cth)

cot rel. error abs median: 10.866 % cloud optical thickness (cot)

- Uncertainty Quantification
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Approaches:

=  Ensemble of NNs

= captures model uncertainties through sampling
= Bayesian neural networks (BNN) ‘
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= |earns uncertainties in data and model parameters oy B v e erences (12 s
= outputis a probability distribution BNN relative retrieval errors for CTH and COT from validation data set
= more complex and are harder to train
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1. BNN performs slightly worse than the
conventional NN (taking the means as output)
= |earning is harder (much slower),
current results likely not optimal
Standard deviation of ouptuts allows
definition of a confidence interval Rl
= reference values are mostly inside ' : i s s m : i s : 1-9
- reliable quantification of uncertainties
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Retrieved CTH (left) and COT (right) values for 10 random samples

sample index
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Conclusions and Outlook

1. NN as forward models:
= can improve speed of existing retrieval algorithms by orders of magnitude through substitution of the radiative transfer model > near
real time applicable
NN lifecycle chain offers training and integration of specialized NNs
many properties from classical retrieval algorithms are inherited:
= retrieval diagnostics
» difficulties with ill posed problems, local minima
performance allows for potential in inversion algorithm improvements

2. NN for direct inversion:
= easy to apply, good initial performance, no a-priori needed
= conventional NNs are ,black boxes®, no uncertainty quantification
= Ensemble of NNs, BNNs as a possibility to overcome this:
= provide error quantifications
=  BNNs more complex and harder to train but provide reliable error quantifications

- NNs for direct inversion, especially BNNs with uncertainty quantification, have great potential for retrieving cloud properties for
S5P as an alternative to the current forward model approach

= Further investigations in hyperparameter selection and learning have to be made
= |nvertible neural networks (INN), that learn forwards and backwards and can also provide distributions are another interesting approach that
should be followed

For further questions, please contact me: Fabian.Romahn@dlr.de
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