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1- Introduction

* Long-lived halogenated compounds such as CFC-12, PFC-14, HCFC-22 or SF are potent greenhouse gases.

* Following the Montreal Protocol, many of these substances have seen their concentrations evolving rapidly in the atmosphere.

* Today, their Instantaneous Radiative Efficiency (IREs) are mostly evaluated from radiative transfer model calculations for a few idealized atmospheres.
* Here,

* Compared to other methods, no computationally expensive radiative transfer model calculations or assumptions on the atmospheric state are
required.

2- Method

e 15years (2008-2022) of clear-sky SR-OLR are derived from the IASI| radiance

Clr: clear-sky |:| IAS| measurements’.
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Whitburn et al. (2020) in the SR-OLR (in W m2 yr1) are calculated?.

* These LTs contain the spectral sighature of the absorbing species whose

SR-OLR concentration is evolving globally in the atmosphere.
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Gardiner et al. (2008)

The contribution of CO,, N,O and CH, are removed by fitting and subtracting

W SQ'T'LT_” %T';P ":E ?J{T';r ":E their respective Jacobians to the original LT.
Wimfom” ) Wim'fppbv) ' W/m’Tppbv) /1.10 (Wim'ippbv) The forcing rate of change (FRC, in W m=2yr') is calculated by fitting and
Jacobian integration %115 Integrating the Jacobian of the halogenated compounds to the residual LI.
For the conversion to the IRE (W m= ppbv'), the FRC is multiplied by the
x15 CIr TOA IRE Cir TOA IRF period length (15 years) and divided by the change in concentration between
(W/m?/yr) x Appbv™ (W/m?/ppbv) x ppbv | (W/m?) 2008 and 2022.

3- Results

CFC-11 CFC-12 Sk HCFC-22 HFC-134a

IRE (W m2ppbv') 0.31+0.03 0.37+0.08 0.75+0.10 0.31+0.06 0.23+0.07

0.067 0.183 = 0.008 £ 0.077 % 0.030 £

2
IRF (W m™) 0.008 0.041 0.001 0.016 0.009

* Total uncertainties on the IRE and IRF derived from a full sensitivity

‘OLR trend HCFC-22 (-1.17 mW m® yr) analysis (methodology, construction of the Jacobians, slope of the LT, ...).

WO COZ, NZO and CH4 trend CCI4
* Clear signature of 5 halogenated species: CFC-11, CFC-12, SF,, HCFC-22

and HFC-134a.

800 SEL N - T B - VL Y « Total FRC<0 (-0.0150 W m™ 15years™) = decrease in CFC-11 and CFC-12
not compensating the increase in Sk, HCFC-22 and HFC-134a
concentrations.

* Over 65% of the present day IRF (W m) is due to CFC-11 and CFC-12.

» SF.: largest IRE (0.75 W m™ ppbv') but lowest IRF and FRC because of
4' lowest atmospheric concentration.

A

CFC-11 (0.50 mW m2 yr) HNO,

» Results from literature (e.g. 3,4,5,6) are converted from stratospheric-
adjusted and all-sky RE to clear-sky IRE using average factors.
» Very good correspondence for HCFC-22, HFC-134a and SF..

915 UL IR LR > Reasonable correspondence for CFC-11 and CFC-12.
» Differences can be mostly explained by the uncertainties on the IREs.
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