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Foundation models (FMs) for 
Earth observation (EO)
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▪ FMs for automatic and large-scale analysis of massive EO 
data through learning transferable image representations. 

▪ Existing FMs for EO are either:
• sensor-specific (e.g., Scale-MAE for RGB, SatMAE for Sentinel-

2 multispectral); or

• computationally complex (e.g., DOFA, TerraMind);

• relying on a fixed combination of sensors (e.g., CROMA) with 
sensor/modality-specific efforts (e.g., AnySat, TerraMind)

• requiring massive pretraining sets (e.g., DOFA, AnySat, 
TerraMind)

A significant barrier remains: the lack of unified image 
representations for sensor-agnostic processing of EO data.



Intrinsic heterogeneity of EO imagery sensors
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▪ The heterogeneous nature of EO imagery sensors makes achieving such a goal 
difficult.

▪ Across heterogeneous sensors, how to:
• break the representation barriers;

• pretrain a simple yet effective model, demanding as little data as possible;

• enable downstream transfer using a unified model?



SA-MAE: A Sensor-agnostic FM
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1. Unify sensor representations by projecting any sensor data into a shared 
and divisible space called the spectrum-aware space. 

2. Pretrain a single transformer model with a self-supervised objective: 
• reconstruct randomly masked regions of the sensor-agnostic representations in the 

spectrum-aware space.

All the different 
sensors capture 
subsets of the full 
electromagnetic 
spectrum with well-
defined physical 
properties.



SA-MAE: A Sensor-agnostic FM
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1. Spectrum-aware Image Projection

2. Cross-sensor Token Mixup

3. Spectrum-aware Image Reconstruction

4. Sensor-agnostic Downstream Transfer
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▪ Spectrum-aware Image Projection: 
• We learn spectrum-aware projections 

depending on the considered wavelengths.

• Each sensor’s bands are first projected using 
wavelength-specific projection functions, and 
then aggregated to obtain tokens.
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lSA-MAE: A Sensor-agnostic FM

Eliminates 

the need for 

separate 

models and 

backbones 

for different 

sensors.



▪ Cross-sensor Token Mixup: 
1. We first use pairs of aligned images from different sensors;

2. then exchange tokens across the images of a pair.
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Mitigates the 

bias specific to 

sensor/spectra 

combinations.
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▪ Spectrum-aware Image Reconstruction: 
1. We feed the cross-sensor mixed embeddings into a 

standard encoder-decoder based transformer with
masked tokens. 

2. We reproject the decoded images back to the 
original spectral bands through spectrum-aware 
remapping functions.
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Effectively 

scales into 

larger 

models 

with more 

data.



▪ Sensor-agnostic Downstream Transfer: Thanks to the spectrum-aware image 
projection, the resulting encoder can easily generalize to different sensors by 
using:
• either the existing projection layers (when available) or 

• adapting them for unseen sensors by interpolation. 
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lSA-MAE: A Sensor-agnostic FM

Allows 

downstream 

transfer to 

any EO 

sensor



Experimental Setup
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▪ Pretraining: 
• 120K paired images from the submeter fMoW-RGB dataset and 

its Sentinel-2 counterpart fMoW-S2; and 

• 376K paired images from the BigEarthNet-MM dataset, 
including Sentinel-1 and Sentinel-2 images. 

• We pretrained two models based on ViT-B and ViT-L backbones, 
each for 300 epochs. 

▪ ViT-B model has 116.3M parameters, 4.8M more than MAE

▪ ViT-L model has 334.8M parameters, 5.9M more than MAE 

▪ Downstream transfer on diverse inputs and tasks:

• Single/multi-modal single/multi-label image scene classification 
with variable scale ratios 

• Semantic segmentation with zero-shot sensor transfer

• Few-shot classification
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Model Backbone
BigEarthNet-MM 10%

BEN-S1 (LP) BEN-S2 (FT) BEN-MM (LP)

SatMAE (S2) ViT-B 85.9

GFM Swin-B 86.3

SatLas Swin-B 82.8

I-JEPA ViT-B 85.9

SpectralGPT ViT-B 85.6

S2MAE ViT-B 85.6

msGFM Swin-B 67.5 86.8 -

SA-MAE (Ours) ViT-B 78.9 86.9 85.4

Backbone S2 Pretraining Data

SatMAE (S2) ViT-L 713K 82.1

CROMA ViT-B (x2) 1M 79.8 87.6 85.2

SpectralGPT ViT-L 713K 86.9

S2MAE ViT-L 713K 86.5

SatMAE++ (S2) ViT-L 713K 85.1

SA-MAE (Ours) ViT-L 248K 80.5 87.7 86.7
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BigEarthNet-
MM multi-
label scene 
classification 
results (mAP) 

indicates 
the methods 
that are not 
applicable

linear-probing (LP) 
and finetuning (FT) 
are applied with 10% 
of the training set

Cross-sensor 

Token Mixup
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Model Backbone
Linear 

Probing
Finetuning

SeCO ResNet-18 - 93.1

GASSL ResNet-18 - 89.5

SeCO ResNet-50 95.6 97.2

CACo ResNet-50 95.9 -

SatMAE (S2) ViT-B 96.6 99.2

I-JEPA ViT-B 95.6 99.2

SpectralGPT ViT-B - 99.2

S2MAE ViT-B - 99.2

SA-MAE (Ours) ViT-B 98.4 99.4

SatMAE (S2) ViT-L 97.7 99.0

SatMAE (RGB) ViT-L 93.0 95.7

CROMA ViT-B (x2) 97.6 99.2

SatMAE++ (S2) ViT-L - 99.0

SA-MAE (Ours) ViT-L 98.9 99.6

Top-1 accuracy (%) on EuroSAT
for scene classification under 
linear probing and finetuning. 
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Model Backbone mIoU

I-JEPA ViT-B 36.7

SatMAE (S2) ViT-B 45.5

CROMA ViT-B 46.6

SA-MAE (Ours) ViT-B 47.9

Semantic segmentation on 

DFC2020 dataset with 

frozen backbone finetuning
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Linear 

Layer

Bilinear 

Upsampling
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Model Training mIoU Accuracy F1 Score

U-Net 2D Scratch 47.7 69.7 62.7

DeepLap V3+ Scratch 48.5 71.2 63.2

SA-MAE (w/o PI) Frozen 35.4 55.8 50.6

SA-MAE (ViT-B) Frozen 50.2 75.5 63.7
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Zero-shot sensor transfer for crop-
type segmentation on SICKLE. 

Frozen: a segmentation head is 
finetuned with frozen backbone.

PI: Projection Interpolation

Seen sensor: 

optical bands 

of OLI

Unseen sensor: 

thermal infrared 

bands of TIRS

interpolation to unseen spectrum 

ranges via weighted averaging
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Model Backbone
Top-1 

Accuracy

VHR RGB 
Pretraining 
Data Size

MAE ViT-L 93.3

364K

SatMAE (RGB) ViT-L 94.8

MCMAE ViT-B (x2) 95.0

Scale-MAE ViT-L 95.7

SatMAE++ (RGB) ViT-L 97.5

SA-MAE (Ours) ViT-L 95.8 60K

Top-1 accuracy (%) of finetuning on 
RESISC-45 for scene classification.

Model Backbone WHU-RS19 UCMerced

SatMAE (RGB) ViT-L 69.9 69.7

Scale-MAE ViT-L 79.5 75.0

Cross-Scale MAE ViT-L 79.8 74.5

SA-MAE (Ours) ViT-L 80.4 77.0

Average kNN classification 
accuracy with different scale 
ratios (100%, 50%, 25%, 12.5%)
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Experimental Results (Few-shot Classification)
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Model
Number of 
Parameters

Pretraining 
Data Size

Accuracy

CLIP-ViT-B/16 152M 100M 39.7

Prithvi v1.0 100M 0.75M 46.9

Prithvi v2.0 300M 16.8M 47.5

SA-MAE (ViT-B) 116M 0.5M 52.6

TerraMindv1-B 700M 64M 57.5

TerraMindv1-L 900M 64M 56.6

Full-way 1-shot classification on 
image features of EuroSAT dataset 
over 200 runs

annual crop forest herbaceous 

vegetation
highway industrial

pasturepermanent crop residential river sea and lake

Support Set
Full-way: 10 classes
1-shot: one image 
per class

Feature 

Matching

Query Set

Credit: Helber et. al, 2019.



▪ SA-MAE breaks representation barriers across EO sensors by:
• projecting diverse sensory data into shared spectrum-aware space; and 
• pretraining with masked data modelling and cross-sensor token mixup. 

▪ This leverages synergies between sensors characterized by different spectral properties, 
while eliminating the need for isolated efforts in training sensor-specific models with a 
high pretraining data efficiency. 

▪ Toward unified multi-sensor EO:
• extensions to the temporal domain with spatial-resolution aware projections; 

• deeper analysis on any sensor downstream transfer; and 

• scaling to more sensors and more data.

▪ Stay tuned for model weights, code, paper, and more! 
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Interested in pursuing a 

PhD on Multi-Modal 

Foundation Models for 

EO?
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