# Breaking Representation Barriers for Earth Observation: A Sensor-Agnostic Foundation Model



Gencer Sumbul, Devis Tuia

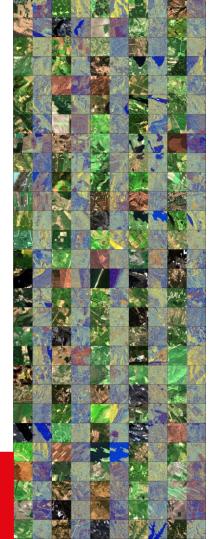
Environmental Computational Science and Earth Observation Laboratory (ECEO)





# Foundation models (FMs) for Earth observation (EO)

- FMs for automatic and large-scale analysis of massive EO data through learning transferable image representations.
- Existing FMs for EO are either:
  - sensor-specific (e.g., Scale-MAE for RGB, SatMAE for Sentinel-2 multispectral); or
  - computationally complex (e.g., DOFA, TerraMind);
  - relying on a fixed combination of sensors (e.g., CROMA) with sensor/modality-specific efforts (e.g., AnySat, TerraMind)
  - requiring massive pretraining sets (e.g., DOFA, AnySat, TerraMind)



A significant barrier remains: the lack of unified image representations for sensor-agnostic processing of EO data.



· esa

# **Intrinsic heterogeneity of EO imagery sensors**

 The heterogeneous nature of EO imagery sensors makes achieving such a goal difficult.



RGB 3 bands 1m GSD



Multispectral
13 bands
10m GSD

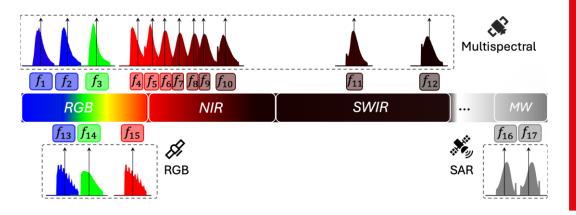


SAR 2 bands 10m GSD

- Across heterogeneous sensors, how to:
  - break the representation barriers;
  - pretrain a simple yet effective model, demanding as little data as possible;
  - enable downstream transfer using a unified model?

· esa

# **SA-MAE: A Sensor-agnostic FM**



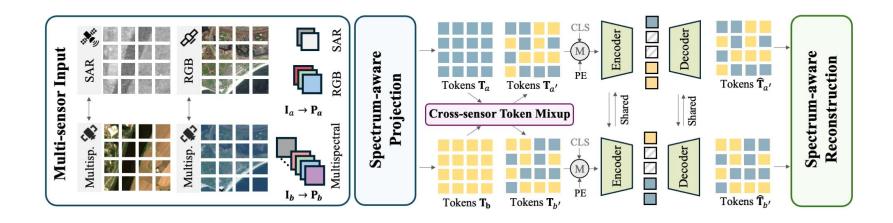
All the different sensors capture subsets of the full electromagnetic spectrum with well-defined physical properties.

- 1. Unify sensor representations by projecting any sensor data into a shared and divisible space called the spectrum-aware space.
- 2. Pretrain a single transformer model with a self-supervised objective:
  - reconstruct randomly masked regions of the sensor-agnostic representations in the spectrum-aware space.



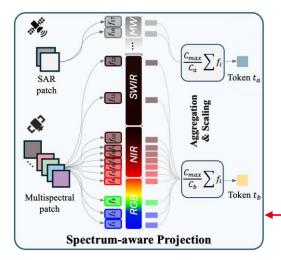


- 1. Spectrum-aware Image Projection
- 2. Cross-sensor Token Mixup
- 3. Spectrum-aware Image Reconstruction
- 4. Sensor-agnostic Downstream Transfer



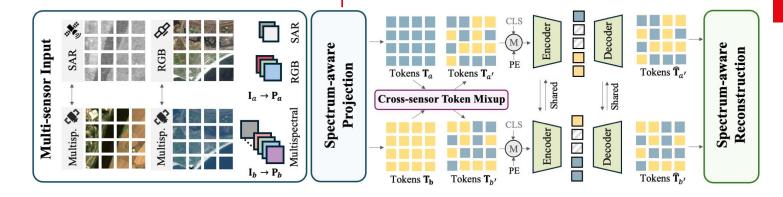
ncer sumpu





- Spectrum-aware Image Projection:
  - We learn spectrum-aware projections depending on the considered wavelengths.
  - Each sensor's bands are first projected using wavelength-specific projection functions, and then aggregated to obtain tokens.

Eliminates the need for separate models and backbones for different sensors.

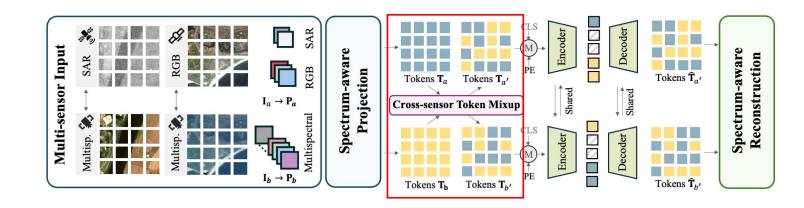


Gencer Sumbul



- Cross-sensor Token Mixup:
  - 1. We first use pairs of aligned images from different sensors;
  - 2. then exchange tokens across the images of a pair.

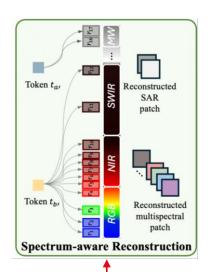
Mitigates the bias specific to sensor/spectra combinations.



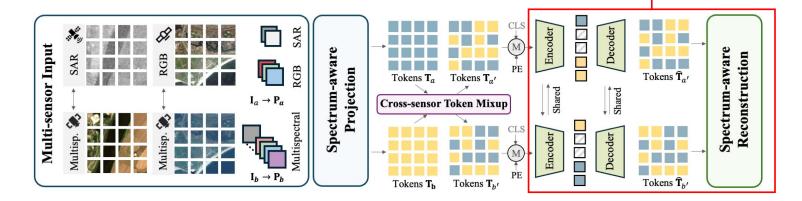




- Spectrum-aware Image Reconstruction:
  - We feed the cross-sensor mixed embeddings into a standard encoder-decoder based transformer with masked tokens.
  - We reproject the decoded images back to the original spectral bands through spectrum-aware remapping functions.



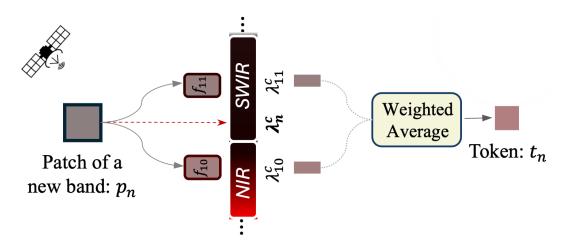
Effectively scales into larger models with more data.







- Sensor-agnostic Downstream Transfer: Thanks to the spectrum-aware image projection, the resulting encoder can easily generalize to different sensors by using:
  - either the existing projection layers (when available) or
  - adapting them for unseen sensors by interpolation.



Allows downstream transfer to any EO sensor

# **Experimental Setup**

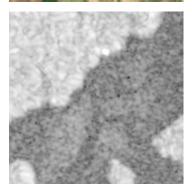


#### • Pretraining:

- 120K paired images from the submeter fMoW-RGB dataset and its Sentinel-2 counterpart fMoW-S2; and
- 376K paired images from the BigEarthNet-MM dataset, including Sentinel-1 and Sentinel-2 images.
- We pretrained two models based on ViT-B and ViT-L backbones, each for 300 epochs.
  - ViT-B model has 116.3M parameters, 4.8M more than MAE
  - ViT-L model has 334.8M parameters, 5.9M more than MAE
- Downstream transfer on diverse inputs and tasks:
  - Single/multi-modal single/multi-label image scene classification with variable scale ratios
  - Semantic segmentation with zero-shot sensor transfer
  - Few-shot classification







Gencer Sumbul

**EXPERIMENTAL RESULTS** 

# **EPFL**

## **Experimental Results (Multispectral, Radar, Multi-Modal)**



| Model         | Backbone   |                     | BigEarthNet-MM 10% |             |             |  |
|---------------|------------|---------------------|--------------------|-------------|-------------|--|
| wiouei        |            | Баскропе            | BEN-S1 (LP)        | BEN-S2 (FT) | BEN-MM (LP) |  |
| SatMAE (S2)   | ViT-B      |                     | X                  | 85.9        | X           |  |
| GFM           |            | Swin-B              | X                  | 86.3        | X           |  |
| SatLas        | Swin-B     |                     | X                  | 82.8        | X           |  |
| I-JEPA        | ViT-B      |                     | X                  | 85.9        | X           |  |
| SpectralGPT   | ViT-B      |                     | X                  | 85.6        | X           |  |
| S2MAE         | ViT-B      |                     | X                  | 85.6        | X           |  |
| msGFM         | Swin-B     |                     | 67.5               | 86.8        | -           |  |
| SA-MAE (Ours) | ViT-B      |                     | 78.9               | 86.9        | 85.4        |  |
|               | Backbone   | S2 Pretraining Data |                    |             |             |  |
| SatMAE (S2)   | ViT-L      | 713K                | X                  | 82.1        | X           |  |
| CROMA         | ViT-B (x2) | 1M                  | 79.8               | 87.6        | 85.2        |  |
| SpectralGPT   | ViT-L      | 713K                | X                  | 86.9        | X           |  |
| S2MAE         | ViT-L      | 713K                | X                  | 86.5        | X           |  |
| SatMAE++ (S2) | ViT-L      | 713K                | X                  | 85.1        | X           |  |
| SA-MAE (Ours) | ViT-L      | 248K                | 80.5               | 87.7        | 86.7        |  |

BigEarthNet-MM multilabel scene classification results (mAP)

**X** indicates the methods that are not applicable

linear-probing (LP) and finetuning (FT) are applied with 10% of the training set





Projection













SatMAE (RGB)

SatMAE++ (S2)

SA-MAE (Ours)

**CROMA** 



esa

# **Experimental Results (Multispectral)**

| Model         | Backbone  | Linear<br>Probing | Finetuning |
|---------------|-----------|-------------------|------------|
| SeCO          | ResNet-18 | -                 | 93.1       |
| GASSL         | ResNet-18 | -                 | 89.5       |
| SeCO          | ResNet-50 | 95.6              | 97.2       |
| CACo          | ResNet-50 | 95.9              | -          |
|               |           |                   |            |
| SatMAE (S2)   | ViT-B     | 96.6              | 99.2       |
| I-JEPA        | ViT-B     | 95.6              | 99.2       |
| SpectralGPT   | ViT-B     | -                 | 99.2       |
| S2MAE         | ViT-B     | -                 | 99.2       |
| SA-MAE (Ours) | ViT-B     | 98.4              | 99.4       |
|               |           |                   |            |
| SatMAE (S2)   | ViT-L     | 97.7              | 99.0       |

ViT-L

ViT-B (x2)

ViT-L

ViT-L

93.0

97.6

98.9

95.7

99.2

99.0

99.6

Top-1 accuracy (%) on EuroSAT for scene classification under linear probing and finetuning.

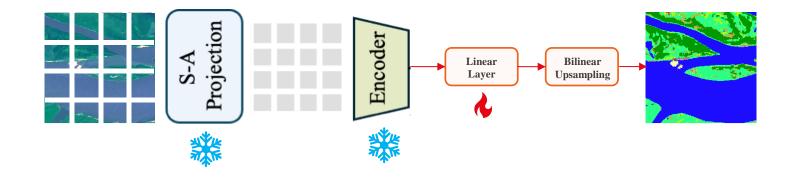




# **Experimental Results (Semantic Segmentation)**

| Model         | Backbone | mloU |
|---------------|----------|------|
| I-JEPA        | ViT-B    | 36.7 |
| SatMAE (S2)   | ViT-B    | 45.5 |
| CROMA         | ViT-B    | 46.6 |
| SA-MAE (Ours) | ViT-B    | 47.9 |

Semantic segmentation on DFC2020 dataset with frozen backbone finetuning



## **Experimental Results (Unseen Sensor, Segmentation)**



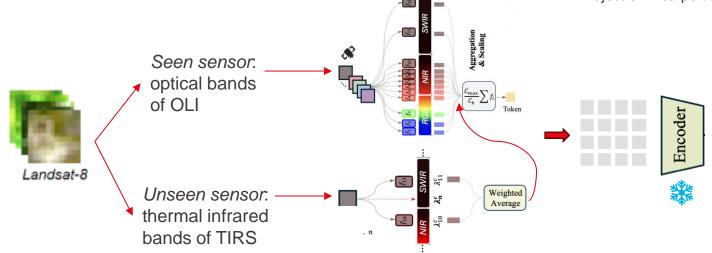


| Model           | Training | mloU | Accuracy | F1 Score |
|-----------------|----------|------|----------|----------|
| U-Net 2D        | Scratch  | 47.7 | 69.7     | 62.7     |
| DeepLap V3+     | Scratch  | 48.5 | 71.2     | 63.2     |
| SA-MAE (w/o PI) | Frozen   | 35.4 | 55.8     | 50.6     |
| SA-MAE (VIT-B)  | Frozen   | 50.2 | 75.5     | 63.7     |

Zero-shot sensor transfer for croptype segmentation on SICKLE.

Frozen: a segmentation head is finetuned with frozen backbone.

PI: Projection Interpolation



interpolation to unseen spectrum ranges via weighted averaging

# **Experimental Results (VHR RGB)**

5



| Model           | Backbone | WHU-RS19 | UCMerced |
|-----------------|----------|----------|----------|
| SatMAE (RGB)    | ViT-L    | 69.9     | 69.7     |
| Scale-MAE       | ViT-L    | 79.5     | 75.0     |
| Cross-Scale MAE | ViT-L    | 79.8     | 74.5     |
| SA-MAE (Ours)   | ViT-L    | 80.4     | 77.0     |

Average kNN classification accuracy with different scale ratios (100%, 50%, 25%, 12.5%)









| Model          | Backbone   | Top-1<br>Accuracy | VHR RGB<br>Pretraining<br>Data Size |
|----------------|------------|-------------------|-------------------------------------|
| MAE            | ViT-L      | 93.3              |                                     |
| SatMAE (RGB)   | ViT-L      | 94.8              |                                     |
| MCMAE          | ViT-B (x2) | 95.0              | 364K                                |
| Scale-MAE      | ViT-L      | 95.7              |                                     |
| SatMAE++ (RGB) | ViT-L      | 97.5              |                                     |
| SA-MAE (Ours)  | ViT-L      | 95.8              | 60K                                 |

Top-1 accuracy (%) of finetuning on RESISC-45 for scene classification.

# esa

**EXPERIMENTAL RESULTS** 

# **Experimental Results (Few-shot Classification)**

| Model          | Number of<br>Parameters | Pretraining<br>Data Size | Accuracy |
|----------------|-------------------------|--------------------------|----------|
| CLIP-ViT-B/16  | 152M                    | 100M                     | 39.7     |
| Prithvi v1.0   | 100M                    | 0.75M                    | 46.9     |
| Prithvi v2.0   | 300M                    | 16.8M                    | 47.5     |
| SA-MAE (VIT-B) | 116M                    | 0.5M                     | 52.6     |
|                |                         |                          |          |
| TerraMindv1-B  | 700M                    | 64M                      | 57.5     |
| TerraMindv1-L  | 900M                    | 64M                      | 56.6     |

Full-way 1-shot classification on image features of EuroSAT dataset over 200 runs



**Feature** 

Matching

Query Set

Support Set Full-way: 10 classes 1-shot: one image per class



Credit: Helber et. al, 2019.

· esa

### **Conclusion**

- SA-MAE breaks representation barriers across EO sensors by:
  - projecting diverse sensory data into shared spectrum-aware space; and
  - pretraining with masked data modelling and cross-sensor token mixup.
- This leverages synergies between sensors characterized by different spectral properties, while eliminating the need for isolated efforts in training sensor-specific models with a high pretraining data efficiency.
- Toward unified multi-sensor EO:
  - extensions to the temporal domain with spatial-resolution aware projections;
  - deeper analysis on any sensor downstream transfer; and
  - scaling to more sensors and more data.

Stay tuned for model weights, code, paper, and more!

Interested in pursuing a PhD on Multi-Modal Foundation Models for EO?

