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Introduction: The problem.

Why anomaly detection matters in spacecraft missions?

Spacecraft missions rely on many onboard subsystems — from thermal control to power management — that 
continuously generate massive volumes of telemetry data.

Ensuring the correct operation of these systems is critical for mission success, but even a small undetected 
anomaly can lead to severe consequences.

Traditionally, anomaly detection relies on simple approaches such as predefined nominal ranges or manual 
thresholds. These methods quickly become insufficient as missions grow in complexity and the number of sensors 
increases — telemetry consists of hundreds of interconnected time series, and anomalies are often subtle or 
entirely new.

This growing complexity calls for more advanced, data-driven solutions. Artificial intelligence can automate 
anomaly detection, enabling faster, more accurate, and cost-efficient operations.
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The real challenge: Scaling anomaly detection to mission-level data

Anomaly detection in spacecraft telemetry is not just about finding unexpected values — it’s about doing so 
reliably, automatically, and at scale.

Every month, a single mission can generate:

• ~900,000 telemetry records

• ~20,000 parameters across multiple subsystems

• ~72 GB of raw data to process and monitor

Traditional rule-based approaches cannot handle this level of complexity.

Manual inspection is unfeasible, anomalies may be subtle or unseen before, and static thresholds fail to capture 
evolving system behaviors.

This is the challenge:
How can we efficiently detect anomalies in such massive, multivariate data streams — and do it continuously and 
autonomously to support mission-critical operations?
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PitIA: Our Solution

PitIA is an unsupervised anomaly detection 
system designed specifically for spacecraft 
telemetry.

Purpose: 
Detect anomalous periods in multivariate time 
series and identify the most contributing 
channels — enabling faster diagnosis and 
decision-making.

Approach: 
Based on Multivariate Statistical Process 
Control (MSPC) and Principal Component 
Analysis (PCA), adapted from industrial 
process monitoring to space operations.

Modelling

PitIA turns raw telemetry into actionable anomaly 
insights — autonomously and in real time.



ESA dataset description
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ESA Benchmark Dataset: A Foundation for Anomaly Detection
A new public benchmark
To advance anomaly detection in satellite telemetry, the European 
Space Agency released in 2024 the first open benchmark dataset 
with real, annotated telemetry data.

Real data from multiple missions
The dataset contains multivariate time series from three ESA 
missions, annotated by domain experts and cross-verified with 

state-of-the-art algorithms.

Designed for real operations
It simulates real mission conditions — with rare, subtle, and 

multi-sensor anomalies — and includes a hierarchical 
evaluation pipeline plus new metrics tailored to spacecraft 
operations.

Why it matters
This benchmark enables consistent evaluation and fair comparison 
of algorithms, providing the realistic data needed to train and 
assess PitIA.



Data Preprocessing
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Before training, telemetry from different subsystems must be aligned and standardized.

• Resampling: unify data into a single time resolution to handle different sampling rates (e.g., 30s vs 18s).

• Zero-order hold interpolation: fill missing values by propagating the last known sample without using future 

information.

This ensures a clean, uniform dataset ready for anomaly detection.

Resampling and Synchronization
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Impact and Optimization

Implementing the zero-order hold preprocessing significantly reduces dataset size and 
memory needs:

• From ~15 million rows to ~1 million

• Over 50% memory reduction, enabling longer time spans and faster processing

It also preserves anomalies during interpolation to ensure they are not lost in 
resampling.

TIME RANGE BEFORE ZERO-ORDER

2000 – All channels 15 230 553
1 054 081

2000 – Target columns 14 743 973
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Training PitIA Model
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Training PitIA: Unsupervised Anomaly Detection

PitIA learns what normal spacecraft telemetry looks like and detects deviations from 
this behavior — all without labeled anomalies.

• Uses Multivariate Statistical Process Control (MSPC) techniques such as 
Principal Component Analysis (PCA).

• Builds a model of normal system behavior by capturing correlations among 
thousands of telemetry parameters.

• The number of principal components is automatically selected to capture 90% of 
the cumulative variance in the data.

• New data points that lie far from this learned space are flagged as potential 
anomalies.
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Statistical Indicators: SPE & Hotelling’s T²
PitIA uses two main statistical indicators to evaluate new observations:

• Hotelling’s T² – measures how far a new observation is from the center of 
the learned PCA space.

• Squared Prediction Error (SPE) – measures how much of the observation 

cannot be explained by the model.

To determine whether an observation is anomalous, a statistical threshold 
(UCL) is computed based on a chi-square distribution (typically at 95% 
confidence).
Observations with SPE > UCL or T² > threshold are flagged as anomalies.
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Postprocessing
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Refining and Grouping Anomalies

After detection, PitIA applies a dedicated postprocessing stage to turn raw detections into 
meaningful alerts:

1. Refinement – we compute the gradient of the prediction error 
to highlight subtle but significant changes over time.

2. Grouping – detections less than 6 hours apart are merged into a single event, 
reducing redundant alarms and simplifying analysis.

Together, these postprocessing steps significantly improve detection reliability, reduce noise, 
and ensure anomaly alerts are clear, meaningful, and actionable for mission operations.



Evaluation
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Evaluation. ESA Anomaly Detection Metrics

Metric name What it measures Why it matters

Event Wise (F0.5) Precision vs. recall at event 

level

Fewer false alarms and missed 

detections

Anomaly Detection 

Timing Quality Curve 

(ADTQC)

How close detection is to 

anomaly start

Early and actionable alerts

Context awareness Correct subsystem/channel 

and duration

Operationally useful diagnostics

PitIA was evaluated using the official ESA metrics, which measure not only 

detection accuracy but also operational relevance — precision, timing, and 
usefulness of anomaly alerts.

These metrics ensure PitIA is evaluated based on how well it supports mission 
operations, not just statistical performance.



Results
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ESA Benchmark

PitIA was evaluated on the official ESA anomaly detection benchmark, demonstrating 
competitive performance across precision, timing, and contextual accuracy.

Mission 2

Channels:

• Full set of channels (All)

• Subset of channels (18 – 28)

Train: 01/01/2000 – 01/07/2001 (18 months) 

Test:  01/10/2001 - 01/07/2003 (21 months)

Mission 1

Channels:

• Full set of channels (All)

• Subset of channels (41 – 46)

Train: 01/01/2000 – 01/07/2007 (84 months) 

Test:  01/10/2007 - 01/07/2009 (21 months)
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From Benchmark to Operations: Continuous Model Updating

PitIA transitions from static benchmark setups — which rely on years of historical data 
— to a lightweight, continuous, and operational deployment.
The model is trained using only one month of telemetry and is updated monthly
with a sliding window strategy, ensuring it remains aligned with the most recent 
spacecraft conditions.
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Conclusions

❑ Robust and scalable approach:

▪ Valid in real scenarios with large volumes of data / TM.

▪ Generic: valid for different missions, signal types, etc.

▪ Unassisted: no action required from the operator

▪ Low computational requirements  

▪ Adaptability to changes in the system thanks to automatic unassisted 

training and threshold calculation

▪ Balanced results FP and FN 

❑ Outstanding results for mission 2. Especially when training by subsystems.

❑ Promising and state-of-the-art results for mission 1. This mission seems to 

be more stable and refined, and its anomalies are more challenging. 
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