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Internal Learning Eesa

 Alternative mode of deep learning
« Unlike conventional (external) learning, the priors are extracted from the inference sample

 Topology can be defined “on the spot”

: n n .
Convention ("External") Internal Learning
Involves optirnising a model over a Iset of example samples, Involves optimising a model over a set of example samples,
most often with ground truth to maximise aggregate most often with ground truth to maximise aggregate
performance. performance.
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Internal Learning for Super-Resolution esa

recurrence of patches across scales of a single image
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(a) Input Image (b) Ext. DB - 5imgs.  (c) Ext. DB - 40 imgs. (d) Ext. DB - 200 imgs. (e) Internally (Error values)

Figure 4. External vs. Internal “Expressiveness”. Errors induced by replacing each patch from the input image with its most similar
patch found in: (b)-(d) an external database of 5, 40, 200 images, vs. (e) internally, within the input image (excluding the patch itself and

its immediate local vicinity). Red signifies high errors, blue signifies low errors. Patches obtain lower error internally than externally.
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Internal Learning for Super-Resolution

esa

* recurrence of patches across scales of a single image
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Figure 2: KernelGAN: The patch GAN trains on patches of a single input image (real). D tries to distinguish
real patches from those generated by G (fake). G learns to downscale X2 the image while fooling D i.e.
maintaining the same distribution of patches. Both networks are fully convolutional, which in the case of images
implies that each pixel in the output is a result of a specific receptive field (i.e. patch) in the input.
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Internal Learning for Super-Resolution Eesa

* recurrence of patches across scales of a single image
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Deep Image Prior Eesa

* The power of “deep convolutions” prior
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Deep Image Prior esa

« Natural impedance of DNNs to unstructured data can be observed
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Internal Super-Resolution Eesa

e Inherent multi-modality of the SR problem

e Depending on the downsampling kernel, SR factor, and underlying data distribution, each LR can
correspond to a large number of images

e Internal learning does not model the data distribution
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Internal Super-Resolution Eesa

e Inherent multi-modality of the SR problem
e Depending on the downsampling kernel, SR factor, and underlying data distribution, each LR can
correspond to a large number of images
e Internal learning cannot model the data distribution
M. Czerkawski “Satellite image cloud removal: learning within and beyond the sample” (2023)
M. Czerkawski et al. “Deep Internal Learning for Inpainting of Cloud-Affected Regions in Satellite

Imagery” (MDPI Remote Sensing, 2022)
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Multi-modal Convolutional Parameterisation Network esa

« Expansion to Deep Image Prior to handle spatially aligned multi-modal samples
* Includes additional local adjustment heads to handle disparities between domains
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Multi-modal Convolutional Parameterisation Network

esa

* Loss include domain-specific losses as well as cyclic constraints

] ] moom-e-
' Cycle
o Domain A Domain A Domain A ' Shared
” Head ] Signal > Cycle Head ~ Core
— . Signal A
Input Core Shared L] L] I
Activation Sﬁ'g;‘aﬁf&s sﬁ;zl Lp(M )
[ 1 [ 1 - --
| - : Cycle
N Domain B Domain B Domain B Shared
C(:y(:!.c’. d Head g Signal > Cycle Head %: Core
,  SignalB |
12
- o =W 4=l — i wem mm O bha Bl 2 S B = = em i v ? THE EUROPEAN SPACE AGENCY



Multi-modal Convolutional Parameterisation Network esa

« Example: upsample the 60 m SWIR band of Sentinel-2 with RGB bands used as reference

LR Input
(42 x 42)

5 MCPN (E) 5 MCPN (D) 0 Stacked 0 PixTransform 0 EDSR
0 10 20 30 40 50 50 \ 7 50 50 50
100 100 100 100 100
HR Input 150 150 150 150 150
6) 200 200 200 200 200
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Multi-modal Convolutional Parameterisation Network esa

 RGB bands based on historical optical mean

MCPN (E)

MCPN (D)

Stacked PixTransform EDSR Ground Trut
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Neural Knitworks Eesa

e Flexible model for internal learning based on Neural Implicit Representations

e A tiny network is used to map from coordinate space to colour space
M. Czerkawski “Neural Knitworks: Patched neural implicit representation networks” (Pattern Recognition,
2024)
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Neural Knitworks Eesa

e Combination of:
NIR (Neural Implicit Representation)
Adversarial Patch Loss
Deep Linear Approximation of the Kernel

Positional Patch Target Patch Pixel LR Downsampling
Encoding MLP Repres{en]tati_on MLP Image Loss
@(x) H P(P(x)) |
CoordinatesL) Mapped | , . | H ISR = (Linear)
H mage
¥ ‘ Featies Discriminator Downsampling
! MLP D _ Discriminator Module
Cross-Patch | Loss
Consistency
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Neural Knitworks Eesa

e Internal learning with adversarial losses can often lead to artefacts - neural implicit representation can
provide the right foundation for internal adversarial losses as in Neural Knitworks

MLP Neural Knitwork SinGAN
PNR 25.78 PSNR 27.25 P R 7.37 GT

PSNR 25.86 PSNR 26.97 PSNR 19.35
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Internal Learning for Modality Transfer (ZS RGB-2-
MSI) esa

 Internal learning for zero-shot model prediction transfer
* Transfer RGB predictions to MSI in a zero-shot manner

Incomplete Incomplete Inpainted Partially-complete Inpainted
Multispectral RGB RGB Multispectral Multi-Spectral
Text-to-Image Deep Image Prior
RGB Inpaintin ACIEAHE]
painting Completion
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Conclusions esa

Alternative learning paradigm

Advantages
Flexible problem definition (topology, conditions etc.)
No large-scale training costs
No large-scale dataset required

Disadvantages
Slower inference (mostly a few mins per image)
No data prior

Future prospects

Can we push the conventional models to make better use of the information that already exists
in the sample?
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