

CPR External Calibration by Active Radar Calibrator and CPR Level 1/Level 2 Product Validation H.Horie, Y. Hagihara, K. Kanemaru, Y. Ohno and H. Hanado NICT (National Institute of Information and Communications Technology)

CPR Overview

CPR L1b Product (Major Items): Reflectivity Factor (Z factor) Doppler Velocity (Vd) Surface related product

CPR L2a (CPR ECO) Product: Integrated Z factor (1/10km) Integrated Vd (1/10km) PIA: Path Integrated Attenuation Mirror Flag/Clutter Echo Vd folding/NUBF cprrection

Major Calibration/Validaion Items Z factor Doppler Velocity

CPR Calibration Concept

Basic Calibration Methodogy (On-board Calibration)

- CCDB (Calibration Characterization DataBase) is established by system test before launch.
- During level 1 processing, obtained data is corrected using CCDB as a function of temperature telemetry.
- On board equipments (ex. Power monitor & Doppler Reference Signal for transmitting power, noise diode & normal load for receiver gain) are used to compare level 1 processing result.
- Health check by Interncal Calibration Mode operation

External Calibration Objective

- CPR Radar Parameters (ex. Transmitting Power, Receiver Gain, etc) are measured for helth check of hardware.
- CPR Radar Parameters are checked from trend of measured data for long period.

ARC External Calibration

- CPR antenna beam pointing measurement (enough for cloudy day)
- CPR transmitter and receiver measurement indevendly (need sunny day) and then defined **Calibration Factor**

CPR ARC External Calibration

CPR Calibration Area

Peak Level Estimation using ARC

ARC: Active Radar Calibrator

Beam Position Estimation

Active Radar Calibrator

NICT

External Calibration Activity

NICT conducts the external calibration using ARC (Active Radar Calibrator) for CPR at Tone-river area, which is needed to decide the exact values for CPR measurement.

The 7 ARC experiments had been performed.

Last 5 experiments data are available for CPR calibraion. Currently under evaluation for these data.

11/3

Nominal Orbit 1

Nominal Orbit 2

External Calibration Activity

ARC Experiment History

- N/A 2024/07/05 Canselled due to HPT OFF
- #00 2024/07/18 Not used to obtain radio station license
- #01 2024/08/09 Failed due to wrong polarization
- N/A 2024/08/29 Canselled due to satellite track shifted
- #02 2024/09/05 Succeed (Linear polarization)
- #03 2024/10/25 Succeed (doubtful due to Power Sensor failed**)
- #04 2024/11/03 Succeed (<u>ARC#3 Power Sensor failed*</u>)
- #05 2024/11/19 Succeed
- #06 2024/11/28 Canselled due to HPT OFF
- #07 2024/12/14 Succeed
- #08 2024/12/23 Canselled due to HPT OFF
- #09 2025/01/17 Succeed
- #10 2025/02/02 Canselled due to bad weather
- #11 2025/02/11 Succeed
- #12 2025/02/27 Succeed (ARC#1 Time Code was wrong)
- #13 2025/03/08 Succeed (Cloudy)
- #13 2025/03/24 Planned

no more valid

Methodlogy of ARC Calibration Activity

Estimation method for the system of CPR Transmitting and ARC Receiving

- 1. Each ARCs measure the time series of measured power, which is along track direction of satellite.
- 2. Convert to the along track angles from satellite altitude and velocity information, then peak powers are estimated for each ARCs (see figures below)
- 3. Each ARCs measure the exact location by GPS with correction (accuracy < 0.1m) then, cross-track angles from satellite are calcurated using restituted orbit data.
- 4. The peak received power at the ground is estimated the fitting antenna pattern for the cross-track direction. (see figure bottom-right)
- 5. Expected received power by ARC is calcurated by Friis transmission equation

Friis transmission equation

-0.02 0 0.02 Azimuth Anale Ideal #3

0.02 0.04 0.06 0.08

#1

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02

-10 -12

-14

-16

Methodlogy of ARC Calibration Activity

Estimation method for the system of ARC Transmitting and CPR Receiving

- Each ARCs transmit signal with the different delay time, so it can be distinguish each ARC signals from CPR Level 1 received signal data (see figure right).
- The peak power from each ARCs is estimated by the renge profile. (see figure bottom-right)
- The peak power corrected for the integrateion effect at the CPR on-board.
- Each ARCs measure the exact location by accurate GPS receiver (accuracy < 0.1m)

then, cross-track angles from satellite are calcurated using restituted orbit data.

- The peak received power at the CPR is estimated the fitting antenna pattern for the cross-track direction. (see figure below)
- Expected received power by CPR is calcurated by Friis transmission equation
- Compare measured peak power and expected received power, and the correction factor is defined.

CPR received data (not for public)

Result of ARC External Calibration

The difference between measured and expected value for the system of CPR transmission and ARC reception

The difference value for the system of ARC transmitting and CPR reception

CPR Tx \rightarrow ARC Rx Factor: **-1.94 dB**

ARC Tx \rightarrow CPR Rx Factor: **-2.06 dB**

CPR Transmitting Antenna Pattern Reconstruction

All measurement data is plotted from Sep. 2024 to the antenna pattern obtained by system test

JAXA

· e esa

Gauss pattern: same as beam width

Only 3 data are out from antenna pattern due to ARC calibration error due to failed power sensor.

NICT Koganei (Validation Super Site in Japan)

In addition, many Lidars (NICT, NIES, TMU and Kyushu-U) and oether instruments* are operated here.

* MicroWave Radiometer, Wind Profilier, Sky-Camera, etc.

Sensitivity -40dBZ @ 15km height for integration 1 seconds

One Dimentional Scanning 750m @ 5 km height Sensitivity: -26dBZ @ zenith -20dBZ @ scan edge

CPR L1b Validation

10/25 distance: 6.4km

- Machup with HG-SPIDER at NICT Koganei (direct comparison)
- 10/06 Ascending (no cloud echo)
- 10/25 Descending (cloud echo exist, distance: 6.4km)
- 11/01 Ascending (not enough cloud echo, distance: 8.1km)
- 12/14 Descending (not enough cloud echo, distance: 10.4km)

CPR L1b Validation (HG-SPIDER)

Zfactor

Vd

For direct comparison, the distance is slightly large for considering as the same cloud systems. Statistics comparing is also cosidered.

CPR L1b Validation (WINDAS)

JAXA Cesa

- WINDAS (WInd profiler Network and Data Acquisition System) are pperated by JMA (Japan meterological agency) for 33 locations in Japan (Right figure). The observation period is 10 minutes.
- Matchup scene with WINDAS is only one times for July to September showed below, but it is 5 times for Octorbar.

L2 Validation (Z factor & Doppler Velocity Statistics)

2025/01 L2a (equiv. vCa)

Comparison CPR Statistics and HG-SPIDE Statistics # of samples: 33771988 # of samples: 56417876 -80 th トHG 10^{-2} 6 x # of samples: 418362 ⊢ 1.2 Z1kn -70 Relative 710km 1.0 -60 õ -ວບ -50 ് Temperature [°C] ο ο Temperature | -50 -40 0.8 Temperature -40 Frequency [%] -40 -30 -30 -30 0.6 -20 -20 -20 -10 -10 0.4 0 0 0.2 10 10 10 20 20 0.0 20 -30 -20 -10 10 20 -40 0 10 -30 -20 -10 20 -40 0 -20 10 20 -30 -10 -40 Z factor [dBZ] Z factor [dBZ] 7 factor [dB7] HG -80 # of samples: 25349563 CPR # of samples: 22793860 # of samples: 510059 2.5 CPR 1.6 x 10 -70-Relative Vd -60 2.0 Temperature [°C] -50 -01 ē emperature 1.0 emperature -40-1.5 -40 Frequency [%] -30--30 -30-0.8 -20--20 -20-1.0 0.6 -10--10 0.4 0 0.5 0.2 10 10 10 0.0 0.0 20 20 20 0 2 n -5 -4 -3 -2 -1 з -5 -3 -2 3 -2 -4 Doppler Velocity [m/s] Doppler Velocity [m/s] Doppler Velocity [m/s] See Y. Hagihara's Presentation

L2 Validation (mirror echo flag)

1km integration

L2 Validation (NRCS)

Sea Surface NRCS on wind speed 7-8m/s

CloudSat 2015/01 EarthCARE/CPR 2025/01 Equivalent to vBa (Calibration factor is implemented)

Cloud/Precipitation Echo data are excluded Not corrected Gas attenuation

Almost same values (difference \sim 0.2-0.3dB)

See K. Kanemaru's Presentation

- Explained CPR calibration concept
- The result of CPR ARC externcal calibration is implemented current L1b data (vCb) CPR Tx: -1.94dB, CPR Rx: -2.04dB
- Introduced CPR L1b/L2a Zfactor and Vd Validation with HG-SPIDER (direct comparison)
- Introduced CPR L2a NRCS data comparison with that of cloudsat
- Introduced CPR L1b Vd Validation with WINDAS

Acknowledgment

This work was supported by the 'Promotion of observation and analysis of radio wave propagation' fund of the Ministry of Internal Affairs and Communications, Japan.

