Toward operational Monte Carlo simulation of 3D line-by-line radiation for remote sensing Atmos 2024

Yaniss NYFFENEGGER-PERE

Instituto de Astrofísica de Andalucía - CSIC

July 4, 2024

- 2 Forward model with Monte Carlo
- 3 Jacobian with Monte Carlo
- 4 Perspectives

- In some retrieval procedures we need:
 - the forward model
 - the derivative of the forward model.

- In some retrieval procedures we need:
 - the forward model
 - the derivative of the forward model.
- There are some cases where precision is necessary (line-by-line, scattering, 3D realistic atmosphere, ...).

- Possibility to use the Monte Carlo method:
 - a reference method in radiative transfer which can treat multi-scattering.

- Possibility to use the Monte Carlo method:
 - a reference method in radiative transfer which can treat multi-scattering.
- Monte Carlo benefit from recent work of computer graphics for
 - line-by-line
 - 3D atmospheres handling.

2 Forward model with Monte Carlo

3 Jacobian with Monte Carlo

Perspectives

 Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

 Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

 Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

 Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

 Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

• Radiance estimation with Monte Carlo : we follow photons along paths.

Building a path γ :

succession of free paths and direction changes

Paths space: D_{Γ}

Paths integral: $\int_{D_{\Gamma}} d\gamma ...$

Radiance as an expectancy

$$I_{\nu}(\vec{x},\vec{u}) = \int_{D_{\Gamma}} p_{\Gamma}(\gamma) g(\gamma) d\gamma$$

• Radiance estimation with Monte Carlo

- The absorption coefficient is never calculated.
- Only one line is selected : line-sampling method ¹.

Bibliography

⁽¹⁾ M. GALTIER, S. BLANCO, J. DAUCHET, M. EL HAFI, V. EYMET, R. FOURNIER, M. ROGER, C. SPIESSER, AND G. TERRÉE, Radiative transfer and spectroscopic databases: A line-sampling monte carlo approach, Journal of Quantitative Spectroscopy and Radiative Transfer, 172 (2016), pp. 83–97

BRIEF REPORT

EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES

Spectrally refined unbiased Monte Carlo estimate of the Earth's global radiative cooling

Yaniss Nyffenegger-Péré^{ab.} (©), Raymond Armante^c, Mégane Bati⁴ (©), Stéphane Blanco^{*}, Jean-Louis Dufresne^s (©), Mouna El Hafi^{ae} (©), Vincent Eymet⁴, Vincent Forest⁴, Richard Fournier^a, Jacques Gautrais⁴ (©), Raphaël Lebrun^c, Nicolas Mellado⁴, Nada Mourtaday³, and Mathias Paulin⁴ (©)

Edited by Mark Thiemens, University of California San Diego, La Jolla, CA; received October 9, 2023; accepted December 15, 2023

The Earth's radiative cooling is a key driver of climate. Determining how it is affected by greenhouse gas concentration is a core question in climate-change sciences. Due to the complexity of radiative transfer processes, current practices to estimate this cooling require the development and use of a suite of radiative transfer models whose accuracy diminishes as we move from local, instantaneous estimates to global estimates over the whole globe and over long periods of time (decades). Here, we show that recent advances in nonlinear Monte Carlo methods allow a paradigm shift: a completely unbiased estimate of the Earth's infrared cooling to space can be produced using a single model, integrating the most refined spectroscopic models of molecular gas energy transitions over a global scale and over years, all at a very low computational cost (a few seconds).

climate change | radiative forcing | line-by-line | Monte Carlo

• Mean flux estimation with Monte Carlo ¹ : computation time insensitivity

Bibliography

(1) Y. NYFEENEGGER-PÉRÉ, R. ARMANTE, M. BATI, S. BLANCO, J.-L. DUFRESNE, M. E. HAFI, V. EYMET, V. FOREST, R. FOURNIER, J. GAUTRAIS, ET AL., Spectrally refined unbiased monte carlo estimate of the earth's global radiative cooling, Proceedings of the National Academy of Sciences, 121 (2024), p. e2315492121

Forward model with Monte Carlo: 3D atmospheres

Atmos 2021 recommendation: modelisation of realistics 3D clouds
 HTRDR (but in CK-distribution) ¹

Bibliography

⁽¹⁾ N. VILLEFRANQUE, R. FOURNER, F. COUVREUX, S. BLANCO, C. CORNET, V. EYMET, V. FOREST, AND J.-M. TREGAN, A path-tracing monte carlo library for 3-d radiative transfer in highly resolved cloudy atmospheres, Journal of Advances in Modeling Earth Systems, 11 (2019), pp. 2449–2473

Forward model with Monte Carlo: 3D atmospheres

Computation time insensitivity to the 3D complexity ¹

Bibliography

(1) N. VILLEFRANQUE, R. FOURNER, F. COUVREUX, S. BLANCO, C. CORNET, V. EYMET, V. FOREST, AND J.-M. TREGAN, A path-tracing monte carlo library for 3-d radiative transfer in highly resolved cloudy atmospheres, Journal of Advances in Modeling Earth Systems, 11 (2019), pp. 2449–2473

Forward model with Monte Carlo: merging in progress

• Line-sampling frequential grid ¹

Bibliography

 W. BARBIER, M. BATI, C.-E. HIMEUR, N. MELLADO, Y. NYFFENEGGER-PÉRÉ, AND M. PAULIN, *libProbaTree*, Apr. 2024
 N. VILLEFRANQUE, R. FOURNIER, F. COUVREUX, S. BLANCO, C. CORNET, V. EYMET, V. FOREST, AND J.-M. TREGAN, A path-tracing monte carlo library for 3-d radiative transfer in highly resolved cloudy atmospheres, Journal of Advances in Modeling Earth Systems, 11 (2019), pp. 2449–2473

Yaniss NYFFENEGGER-PERE (IAA)

July 4, 2024 9 / 15

2 Forward model with Monte Carlo

4 Perspectives

• Radiance estimation with Monte Carlo : we follow photons along paths

Radiance as an expectancy

$$I_{\nu}(\vec{x},\vec{u}) = \int_{D_{\Gamma}} p_{\Gamma}(\gamma) g(\gamma) d\gamma$$

• Radiance estimation with Monte Carlo : we follow photons along paths

Radiance depending on $\boldsymbol{\alpha}$

$$I_{
u}(ec{x},ec{u},lpha) = \int_{D_{\Gamma}} p_{\Gamma}(\gamma,lpha) g(\gamma,lpha) d\gamma$$

• Radiance derivative of a parameter α with Monte Carlo ¹:

Radiance derivative as an expectancy

$$\frac{\partial I_{\nu}(\vec{x},\vec{u},\alpha)}{\partial \alpha} = \int_{D_{\Gamma}} p_{\Gamma}(\gamma,\alpha) h(\gamma,\alpha) d\gamma$$

< □ > < 凸

Bibliography

(1) A. DE LATAILLADE, S. BLANCO, Y. CLERGENT, J.-L. DUFRESNE, M. EL HAFI, AND R. FOURNIER, Monte carlo method and sensitivity estimations, Journal of Quantitative Spectroscopy and Radiative Transfer, 75 (2002), pp. 529–538

 Mean flux derivatives to the CO₂ concentration with Monte Carlo¹: computation time insensitivity

Bibliography

M. NADA, B. MÉGANE, B. STÉPHANE, D. JEAN-LOUIS, M. EL-HAFI, E. VINCENT, F. VINCENT, F. RICHARD,
 G. JACQUES, L. PAULE, N.-P. YANISS, AND V. NAJDA, Monte Carlo Simulation of Atmospheric Radiative Forcings Using A

Path-Integral Formulation Approach for Spectro-Radiative Sensitivities. working paper or preprint, Feb 2024

Jacobian with Monte Carlo: 3D atmospheres

• Estimation of several derivatives simultaneously on Titan atmosphere:

• Possibility to have the whole Jacobian matrix alonside the observable in one Monte Carlo.

Yaniss NYFFENEGGER-PERE (IAA)

2 Forward model with Monte Carlo

3 Jacobian with Monte Carlo

Perspectives: Optically thick media

• Radiance derivative to the cloud scattering cross-section ¹.

Bibliography

(1) N. Mourtaday, Espaces de chemins couplés pour le calcul de sensibilités par la méthode de Monte Carlo : opérationnalité et perspectives , PhD thesis, (2024)

Yaniss NYFFENEGGER-PERE (IAA)

Perspectives: Derivative of the geometry

• Application to the cloud border : sensitivity model ¹.

Bibliography

Image: Image:

▶ < ∃ ▶ < ∃

⁽¹⁾ P. LAPEYRE, Z. HE, S. BLANCO, C. CALLOT, C. COUSTET, J. DAUCHET, M. E. HAFI, S. EIBNER, E. D'EON, O. FARGES, ET AL., A physical model and a monte carlo estimate for the specific intensity spatial derivative, angular derivative and geometric sensitivity, arXiv preprint arXiv:2206.05167, (2022)

- W. BARBIER, M. BATI, C.-E. HIMEUR, N. MELLADO, Y. NYFFENEGGER-PÉRÉ, AND M. PAULIN, *libProbaTree*, Apr. 2024.
- M. BATI, S. BLANCO, C. COUSTET, V. EYMET, V. FOREST, R. FOURNIER, J. GAUTRAIS, N. MELLADO, M. PAULIN, AND B. PIAUD, Coupling conduction, convection and radiative transfer in a single path-space: Application to infrared rendering, ACM Transactions on Graphics (TOG), 42 (2023), pp. 1–20.
- A. DE LATAILLADE, S. BLANCO, Y. CLERGENT, J.-L. DUFRESNE, M. EL HAFI, AND R. FOURNIER, *Monte carlo method and sensitivity estimations*, Journal of Quantitative Spectroscopy and Radiative Transfer, 75 (2002), pp. 529–538.
 - M. GALTIER, S. BLANCO, J. DAUCHET, M. EL HAFI, V. EYMET, R. FOURNIER, M. ROGER, C. SPIESSER, AND G. TERRÉE, *Radiative transfer and spectroscopic databases: A line-sampling monte carlo approach*, Journal of Quantitative Spectroscopy and Radiative Transfer, 172 (2016), pp. 83–97.

P. LAPEYRE, Z. HE, S. BLANCO, C. CALIOT, C. COUSTET, J. DAUCHET, M. E. HAFI, S. EIBNER, E. D'EON, O. FARGES, ET AL., A physical model and a monte carlo estimate for the specific intensity spatial derivative, angular derivative and geometric sensitivity, arXiv preprint arXiv:2206.05167, (2022).

M. NADA, B. MÉGANE, B. STÉPHANE, D. JEAN-LOUIS, M. EL-HAFI, E. VINCENT, F. VINCENT, F. RICHARD, G. JACQUES, L. PAULE, N.-P. YANISS, AND V. NAJDA, Monte Carlo Simulation of Atmospheric Radiative Forcings Using A Path-Integral Formulation Approach for Spectro-Radiative Sensitivities. working paper or preprint, Feb 2024.

< □ > < 凸

- Y. NYFFENEGGER-PÉRÉ, R. ARMANTE, M. BATI, S. BLANCO, J.-L. DUFRESNE, M. E. HAFI, V. EYMET, V. FOREST, R. FOURNIER, J. GAUTRAIS, ET AL., *Spectrally refined unbiased monte carlo estimate of the earth's global radiative cooling*, Proceedings of the National Academy of Sciences, 121 (2024), p. e2315492121.
- C. D. RODGERS, *Inverse methods for atmospheric sounding: theory and practice*, vol. 2, World scientific, 2000.

M. ROGER, S. BLANCO, M. EL HAFI, AND R. FOURNIER, *Monte carlo estimates of domain-deformation sensitivities*, Physical review letters, 95 (2005), p. 180601.

N. VILLEFRANQUE, R. FOURNIER, F. COUVREUX, S. BLANCO, C. CORNET, V. EYMET, V. FOREST, AND J.-M. TREGAN, *A path-tracing monte carlo library for 3-d radiative transfer in highly resolved cloudy atmospheres*, Journal of Advances in Modeling Earth Systems, 11 (2019), pp. 2449–2473.