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ERA5:
15 billion (one off)

ECMWF Operational:
180 000

per forecast

AI Model: 
0.3

per forecast

Hersbach, H et al. (2020)

DestinE 4.4 km:
1 600 000

per forecast

For ensemble forecasts, multiply this cost by number 
of ensemble members

COST OF SIMULATION



DESTINATION EARTH

UNCERTAINTY QUANTIFICATION FROM A DETERMINISTIC FORECAST

Post-processed probabilistic forecast = Deterministic km-scale forecast + Probabilistic Forecast Error

fi

Use a Bayesian Neural Network to predict the distribution of the km-scale DestinE forecast error

Better or comparable CRPS at short 
lead times but clear degradation 
from day 5 in extra-tropics.

At all lead times, post-processed 
forecasts  have spread/skill ≈ 1

Geopotential at 500hPa2m temperature

CRPSS relative to operational ensemble
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UNCERTAINTY QUANTIFICATION AGAINST OBSERVATIONS

For more results including 10m wind speed and bias and spread/error see Ivana Aleksovska's Poster

Post-processed 
probabilistic forecast = 
estimated conditional 
distribution using 
operational ensemble 
ENS, single DestinE
forecast 
+ observations

Use Ensemble Model Output Statistics (EMOS) Method to predict the distribution of the km-scale DestinE  forecast

EMOS generated post-processed ensemble 
forecasts for 2mT (trained on 30 previous days 
rolling period):
- better performance vs. raw ensembles 

using CRPS for all lead-times;
- Meteograms (vs. raw and DestinE ENS);
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Can use diffusion models to downscale ensemble members, thus producing high-resolution ensembles much 
more efficiently than classical approaches

DOWNSCALING ENSEMBLE MEMBERS TO KM-SCALE RESOLUTIONS
(ONGOING WORK)

Example from the literature:
CorrDiff trained to downscale ERA5 to WRF simulations at 2km resolution over Taiwan (Mardani et al., 2023)
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UNCERTAINTY QUANTIFICATION AND TEMPORAL INTERPOLATION
(ONGOING WORK BY MET NORWAY, METEO FRANCE, SMHI)
StyleGAN - Input can be ensemble or deterministic forecast

Example ensemble members 
generated by MeteoFrance on 
AROME data (Brochet et al., 2023).
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DATA-DRIVEN FORECASTS FOR UNCERTAINTY QUANTIFICATION

Developing & running both global & local data-driven models 
to create ensembles that complement DestinE simulations
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EXAMPLES IN LITERATURE: LOCAL DATA-DRIVEN FORECAST MODELS

Stretched grid model (Nipen et al., 2024) Limited Area Model (Oskarsson et al., 2023)

Cf. Oskarsson et al. Thurs 9.50am; Buurman et al. (Poster)
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AI EARTH SYSTEM MODEL

Build full Earth System model 
with land, ocean, sea-ice and 
hydrology components

Leverage developments made 
in the ML project especially 
ensemble developments and 
learning from observations
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EXAMPLE FROM THE LITERATURE:
XIHE: A DATA-DRIVEN MODEL FOR GLOBAL OCEAN EDDY-RESOLVING FORECASTING

Wang et al. (2024)
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INTERACTIVITY AND ACCESSIBILITY

Machine learning will be used to 
help stakeholders and policy 
makers interact with the digital 
twins. 

This will make the data more 
accessible to users 
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Providing a packaged system with 
data-retrieval, forecasting & postprocessing.

This system runs on local hardware or cloud
and is delivered in a matter of minutes

It is configurable for Earth-System components
and user-defined outputs.

FORECAST-IN-A-BOX
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Koldunov & Jung 2024

CLIMSIGHT – INSPIRATION FOR ENHANCED INTERACTIVITY



DESTINATION EARTH

SUMMARY OF AI ACTIVITIES
Towards an earth-system machine learning model leveraging DestinE data

Developing end-to-end workflows for ML model components like land, ocean, sea-ice, hydrology

Enhance Digital Twin Engine with ML pipelines from training to post-processing

Using data-driven methods for uncertainty quantification of Extremes and Climate Digital Twin

Climate emulator to rapidly explore ‘what-if’ scenarios

Enhanced interactivity 

Developing a forecast-in-a-box concept.

Building ML demonstrators for impact-sectors (e.g., health, agriculture, urban)

Develop of a weather and climate chatbot
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