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Abstract

The rapid growth of data in today's era has increased the complexity of data-driven issues in science and engineering. This has led to a paradigm shift in
Artificial Intelligence (Al), with a focus on unsupervised/self-supervised learning for vast data volumes, and multimodal learning for integrating diverse
data sources, enhancing decision-making and insights across various applications. Embracing this Al shift for societal challenges, DLR, IBM, FZJ, and KP
Labs have proposed a Geo-foundation Model framework, FAST-EO, for multiple applications. This manuscript introduces two of these applications, to be

provided by DLR, targeting specific challenges in agriculture and forestry.

Monitoring Expansion of Mining Fields into Farmlands

Challenges:

» In Ghana, unregulated quests for gold
threatens natural resources [1] like
cocoa farmlands.

» Small scale mining (SSM) activities
reduced overall agricultural productivity
and increased rural poverty in mining
areas [2].

Goals:

» Develop a benchmark dataset by
integrating publicly available cocoa
maps with annotations of mining and
non-mining areas.

» Train Machine Learning and Deep Learning models to establish
performance baselines for change detection.

» Compare the performance of baseline models with Foundation Model
(FM)-based fine-tuning specifically applied to this issue.

Dataset Creation Approach:
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Preliminary Annotation Results:
» Random Forest (RF) model achieved an average F-score and accuracy of
~94% during cross-validation training on manually labeled data.

» The RF model predicted ground truth labels (mining / non-mining) for
the entire 2459 km? study area in mosaic 2016 and 2022 Sentinel-2
images. Visual assessment confirmed high accuracy predictions.

Monitoring Changes in Forest Above-Ground Biomass

Challenges:

» In mountainous regions such as the
Alps, and Pyrenees, the accuracy of
biomass predictions (e.g. carbon
stock, tree cover, tree height) using
Al4EO significantly decreases [3].

Terrain slope map in Austria and Switzerland

» Deforestation mostly happens in
the terrains up to 50 degree slope
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TCD change map in Austria and Switzerland (2015-2018)

» Reforestation mostly happens in
flatter regions.

Goals:

» Incorporate auxiliary data, such as
elevation models, in training for
domain adaptation. F'm 5 10 20

Change in tree cover density (%)

» Utilize multiple data sources to assess the potential for improvement.

» Expand the test area to evaluate generalizability across varied
topographies, including both flat and mountainous regions.

» Compare the existing models implemented for this problem (U-Net
variants) with FM-based fine-tuning applied to this specific issue.

Preliminary Results:

U-NET-based benchmarking validates the variations in model performance
across topographic changes when using Sentinel-1, encouraging further
investigation with more advanced models.

R2 vs Terrain slope for Austria R2 vs Terrain slope for Switzerland
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Conclusion and Future Work

As illustrated in the left image, this initiative aims to target the application
side of Foundation Models and benchmark them against other state-of-
the-art architectures. The intent is to develop broader solutions for the
societal challenges previously mentioned, as part of the FAST-EO project
funded by ESA, under Contract No. 4000143501/23/I-DT.

References

[1] Gilbert, Danyo. "The Effects of lllegal Small-scale Gold Mining in Ghana: A
Threat to Food Security." (2022): 84-98.

[2] Aragon, Fernando, and Juan Pablo Rud. "Mining, pollution and agricultural
productivity: evidence from Ghana." (2012).

[3] Dostalova, Alena, et al. "European wide Forest Classification based on Sentinel-
1 Data." Remote Sensing 13.3 (2021): 337.




