

universität

Maurus Borne¹, Peter Knippertz¹, Martin Weissmann²

(1) KIT - Institute of Meteorology and Climate Research (IMK-TRO) (2) University of Vienna - Department of Meteorology and Geophysics

Acolus NWP Impact and L2B product quality working meeting, Webex, 1 December 2021

ESA UNCLASSIFIED - For ESA Official #se Only

→ THE EUROPEAN SPACE AGENCY

Radiosonde schedule and launches at Sal airport

Launches: Daily 12 UTC + Aeolus overpasses

Period: 04 to 30 September 2021

All data were ingested in the Global Telecommunication System (GTS)

Day of week	Orbit node	Distance to Sal	Number of profiles
Tuesday	Descending	0 km	4
Thursday	Ascending	120 km	3
Friday	Ascending	220 km	3

Radiosonde measurements: time series

Time series over 37 measurements from 2021-09-07 to 2021-09-27

- Three dust events crossed Sal Island (visible in T and RH profiles) associated with a stronger African Easterly Jet (AEJ)
- Passages of several
 Tropical Disturbances,
 African Easterly waves,
 Tropical Cyclones (visible from meridional wind profiles)

Radiosonde measurements: ECMWF statistics

Average over 20 measurements performed at 12 UTC from 2021-09-07 to 2021-09-27

- Improvement in the standard deviation in the analysis (as expected)
- Overall improvement in bias
- Model bias for humidity in lower troposphere (possibly due to dust events)

Aeolus validation using radiosondes

esa

- Collocation criteria
 - From 120 to 220km distance to Aeolus track
 - Projection along Horizontal Line of Sight
 - Average over 24 Range Bin settings (RBS)
- Error thresholds (used at ECMWF):
 - Mie-cloudy: 5 m/s
 - Rayleigh-clear:
 - Above 200 hPa : 12 m/s
 - Below 200 hPa : 8.6 m/s
- Mission requirement:
 - Bias: 0.7 m/s
 - Precision
 - PBL: 1 m/s
 - Free Troposphere: 2.5 m/s
 - Lower stratosphere: 3 m/s

Aeolus Tuesday Descending orbit above Sal

Collocation criteria: 120 km around Radiosonde, average over 24 RB

Low Rayleigh-clear quality can be attributed to the decreasing atmospheric path signal and attenuation effects of clouds/aerosols.

 $\boldsymbol{*}$

Aeolus Thursday Ascending orbit 120km from Sal

Collocation criteria: 160 km around Radiosonde, average over 24 RB

Low Rayleigh-clear quality can be attributed to the decreasing atmospheric path signal and attenuation effects of clouds/aerosols.

 $\boldsymbol{*}$

Collocation criteria: 220 km around Radiosonde, average over 24 RB

Low Rayleigh-clear quality can be attributed to the decreasing atmospheric path signal and attenuation effects of clouds/aerosols.

 $\boldsymbol{*}$

Rayleigh-clear error

Wind type	Mean Bias	Median Bias	Regression Bias	Scaled MAD
Rayleigh- clear	-0.71	-0.82	-0.77	4.47

Mie-cloudy error

Wind type	Mean Bias	Median Bias	Regression Bias	Scaled MAD
Rayleigh- clear	-0.71	-0.82	-0.77	4.47
Mie-cloudy	0.71	0.78	0.51	1.91

→ THE EUROPEAN SPACE AGENCY

Rayleigh-clear error (without "contamination")

Wind type	Mean Bias	Median Bias	Regression Bias	Scaled MAD
Rayleigh- clear	-0.71	-0.82	-0.77	4.47
Mie-cloudy	0.71	0.78	0.51	1.91
Rayleigh- clear clean	-0.28	-0.79	-0.37	4.18

Removing broken-cloud scene profiles improves the bias and random deviation

- JATAC: 37 Radiosondes were launched from Sal airport during September 2021. 9 Radiosonde-Aeolus comparisons (3 ascending and 6 descending)
- Radiosondes assimilated at ECMWF: Overall improvement in the standard deviation and bias in the analysis.
- Rayleigh-clear quality is related to the atmospheric cloud and dust conditions: can
 possibly be attributed to the decreasing atmospheric path signal and attenuation
 effects of clouds/aerosols. Improving QC within broken-cloud scenes has potential to
 improve the quality of Aeolus data.
- Rayleigh winds have a bias of 0.71 m/s and a random deviation of 4.48 m/s (SMAD). Mie cloudy winds have a bias of 0.71 m/s and a random deviation of 1.9 m/s. Both Rayleigh and Mie channels meet the Aeolus mission requirements of a systematic error equal to 0.7 m/s, but the random errors are still higher than required.