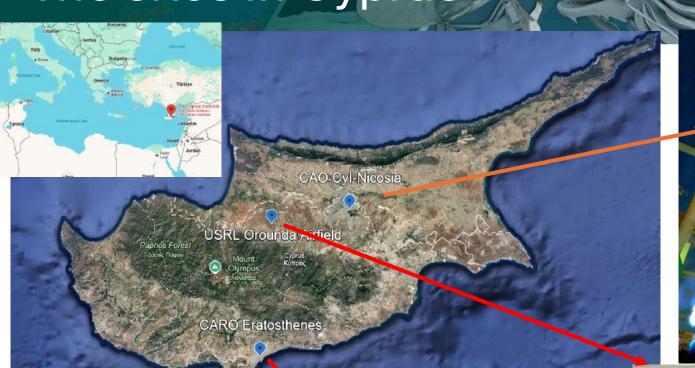


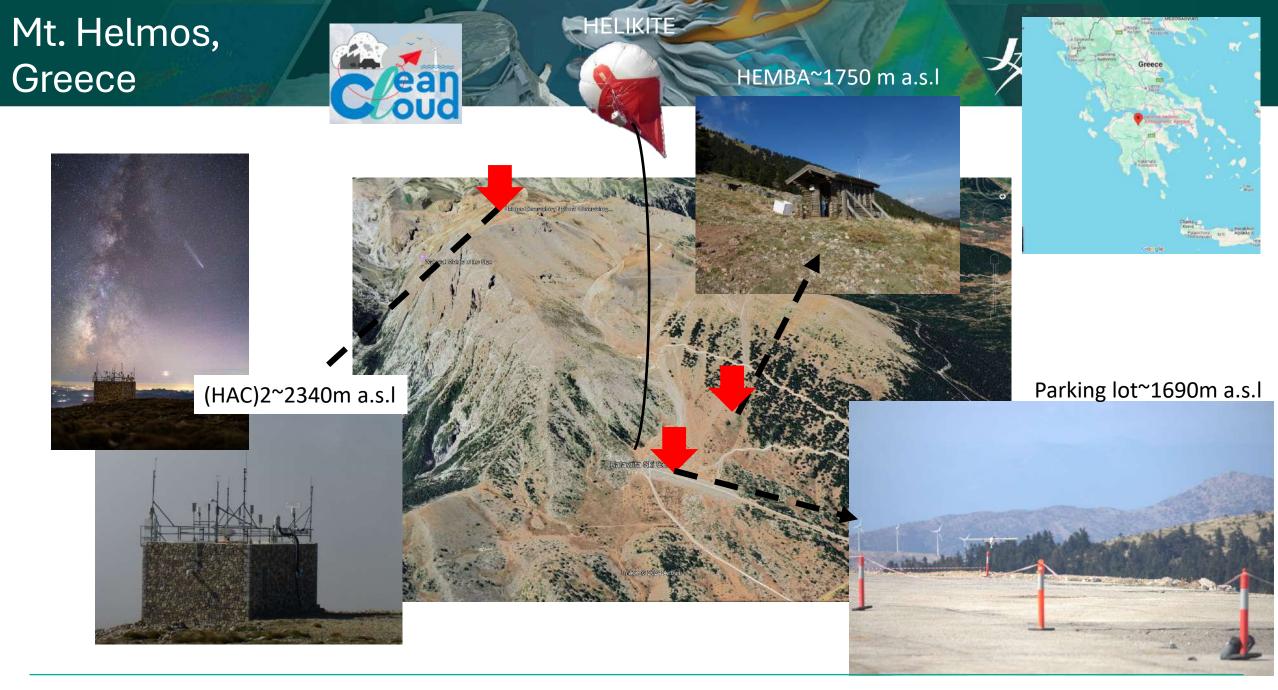
¹Climate and Atmosphere Research Center, the Cyprus Institute, ²Institute for Environmental Research and Sustainable Development, National Observatory of Athens,

³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Department of Environment and Climate, Eratosthenes Centre of Excellence,

⁵Department of Civil Engineering & Geomatics, Cyprus University of Technology, ⁶Particle Instruments & Diagnostics, University of Hertfordshire


⁷NOAA, Chemical Sciences Laboratory, Boulder, CO, USA

The sites in Cyprus

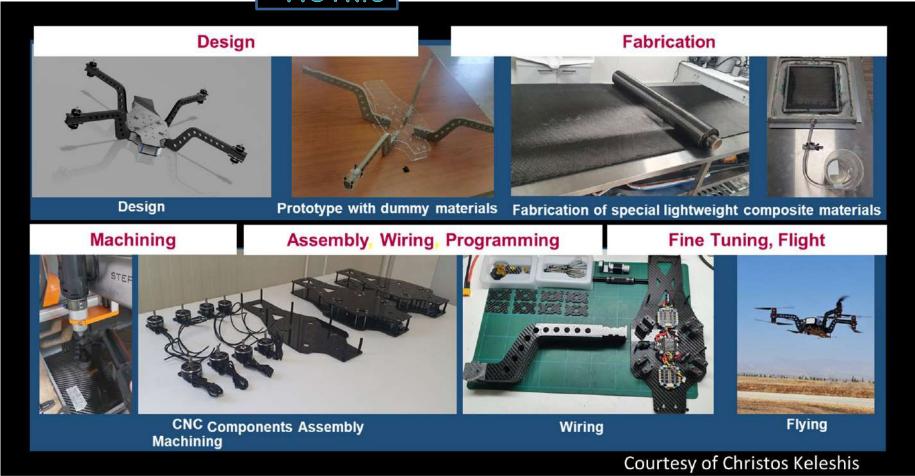


RIN | Frascati (Rome), Italy

Cyprus Atmospheric Observatory: Remote Sensing

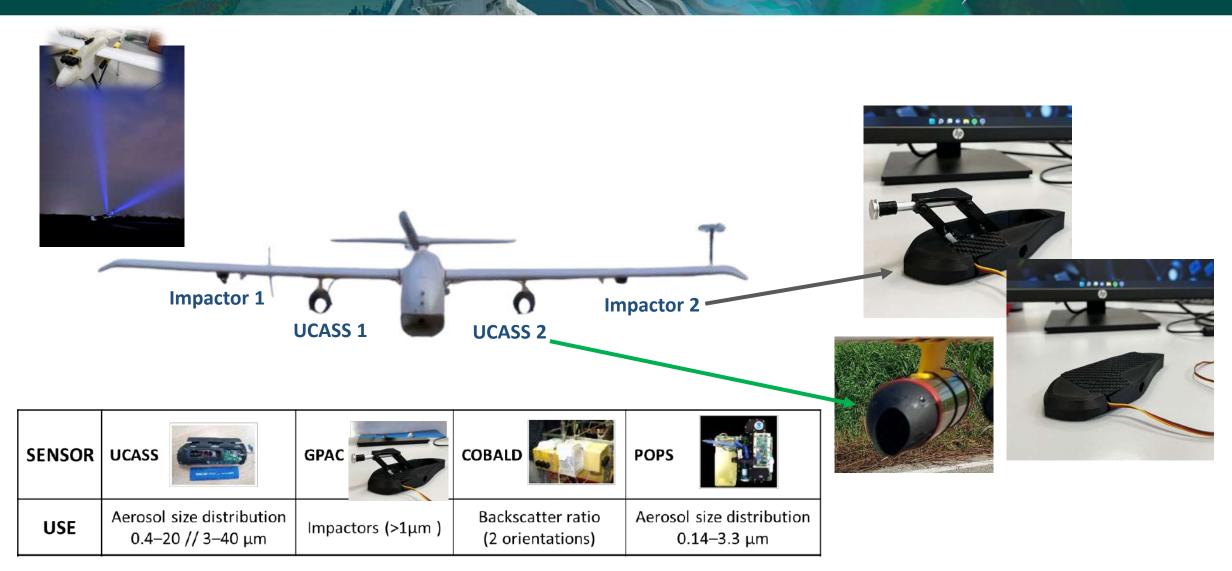
• A network of ground-based instruments at three Cyprus Atmospheric Observatory stations: sunphotometers, ceilometers, 1 lidar and 1 flux station.

Unmanned Systems Research Laboratory (USRL)

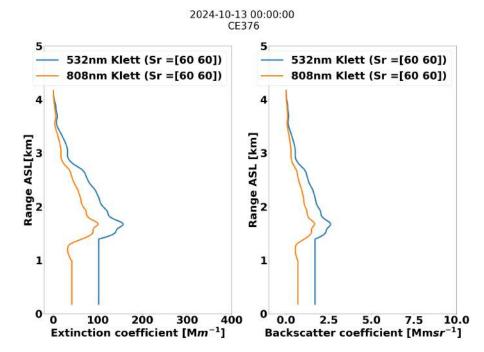


Impactor 1

Impactor 2



UAV sensors for dust and other aerosols


CAO Nicosia-Cyl

Date		EarthCARE Overpass		Distance (Issue)	Lidar Data		AOD 440 (Aeronet)	Clear/Cloudy
		Start UTC time	End UTC time	Distanse (km)	Start (UTC)	End (UTC)	Daily Average	During Overpass
02/07/2024	Monday	12:09:38	12:10:06		11:00:00	13:00:00	0.147	Clearsky
25/07/2024	Friday	22:00:00	0:00:00	48.611115	22:00:00	0:00:00	0.428	Clearsky
28/07/2024	Monday	11:00:00	13:00:00	5.364709	11:00:00	13:00:00	0.119	Clearsky
08/08/2024	Thursday	11:00:00	13:00:00	-37.669237	11:00:00	13:00:00	0.264	Clearsky
14/08/2024	Wednesday	22:00:00	0:00:00	-61.737883	22:00:00	0:00:00	0.159	Clearsky
17/08/2024	Saturday	11:00:00	13:00:00	56.622297	11:00:00	13:00:00	0.141	Clearsky
23/08/2024	Friday	22:00:00	0:00:00	-56.893179	22:00:00	0:00:00	0.394	Clearsky
26/08/2024	Monday	11:00:00	13:00:00	19.0837	11:00:00	13:00:00	0.304	Cloudy
01/09/2024	Sunday	22:00:00	0:00:00	33.294286	22:00:00	0:00:00	0.161	Clearsky
04/09/2024	Wednesday	11:00:00	13:00:00	-85.388822	11:00:00	13:00:00	0.274	Cloudy
11/09/2024	Wednesday	11:00:00	13:00:00	62.998981	11:00:00	13:00:00	0.165	Clearsky
17/09/2024	Tuesday	22:00:00	0:00:00	-21.639679	22:00:00	0:00:00	0.07	Clearsky
19/09/2024	Thursday	22:00:00	0:00:00		22:00:00	0:00:00	0.1	Clearsky
20/09/2024	Friday	11:00:00	13:00:00	-27.383745	11:00:00	13:00:00	0.122	Cloudy
26/09/2024	Thursday	22:00:00	0:00:00	66.781317	22:00:00	0:00:00	0.098	Clearsky
29/09/2024	Sunday	11:00:00	13:00:00	30.20166	11:00:00	13:00:00	0.099	Clearsky
05/10/2024	Saturday	22:00:00	0:00:00	67.09159	22:00:00	0:00:00		Clearsky
12/10/2024	Saturday	22:00:00	0:00:00	98.25164	22:00:00	0:00:00	0.221	Clearsky
15/10/2024	Tuesday	11:00:00	13:00:00	52.42295	11:00:00	13:00:00	0.219	Clearsky
21/10/2024	Monday	22:00:00	0:00:00	15.50546	22:00:00	0:00:00	0.068	Clearsky
24/10/2024	Thursday	11:00:00	13:00:00	30.20165	11:00:00	13:00:00	0.074	Clearsky
30/10/2024	Wednesday	22:00:00	0:00:00	67.09159	22:00:00	0:00:00	0.19	Clearsky
06/11/2024	Wednesday	22:00:00	0:00:00	98.25149	22:00:00	0:00:00	0.122	Clearsky
09/11/2024	Saturday	11:00:00	13:00:00	52.4231	11:00:00	13:00:00	0.181	-
15/11/2024	Friday	22:00:00	0:00:00	15.79428	22:00:00	0:00:00	0.132	Clearsky
18/11/2024	Monday	11:00:00	13:00:00	30.49042	11:00:00	13:00:00	0.049	Cloudy
24/11/2024	Sunday	22:00:00	0:00:00	66.80168	22:00:00	0:00:00	-	Clearsky
01/12/2024	Sunday	22:00:00	0:00:00	-98.463314	22:00:00	0:00:00	0.192	Clearsky
04/12/2024	Wednesday	11:00:00	13:00:00	52.08085	11:00:00	13:00:00	0.167	Cloudy
10/12/2024	Tuesday	22:00:00	0:00:00	-15.716537	22:00:00	0:00:00	-	Cloudy
13/12/2024	Friday	11:00:00	13:00:00	-30.541841	11:00:00	13:00:00	0.117	Clearsky
19/12/2024	Thursday	22:00:00	0:00:00	66.878438	22:00:00	0:00:00	0.271	Cloudy
26/12/2024	Thursday	22:00:00	0:00:00	21.485598	22:00:00	0:00:00	0.137	Clear sky??
29/12/2024	Sunday	11:00:00	13:00:00	52.133204	11:00:00	13:00:00	-	Cloudy??
04/01/2025	Saturday	22:00:00	0:00:00	15.794205	22:00:00	0:00:00	0.287	Cloudy
07/01/2025	Tuesday	11:00:00	13:00:00	30.490323	11:00:00	13:00:00	0.242	Clearsky
13/01/2025	Monday	22:00:00	0:00:00	66.801758	22:00:00	0:00:00	-	Clear sky?
20/01/2025	Monday	22:00:00	0:00:00	98.539374	22:00:00	0:00:00	0.063	Clearsky
23/01/2025	Thursday	11:00:00	13:00:00	52.133204	11:00:00	13:00:00	-	Cloudy
29/01/2025	Wednesday	22:00:00	0:00:00	15.794205	22:00:00	0:00:00	0.209	Clearsky
01/02/2025	Saturday	11:00:00	13:00:00		11:00:00	13:00:00		Clearsky
07/02/2025	Friday	22:00:00	0:00:00		22:00:00	0:00:00		Clearsky
14/02/2025	Friday	22:00:00	0:00:00	98.69322	22:00:00	0:00:00		Clearsky
17/02/2025	Monday	11:00:00	13:00:00	51.97837	11:00:00	13:00:00	-	Cloudy

CAO-Cyl Nicosia Overpasses 532 nm

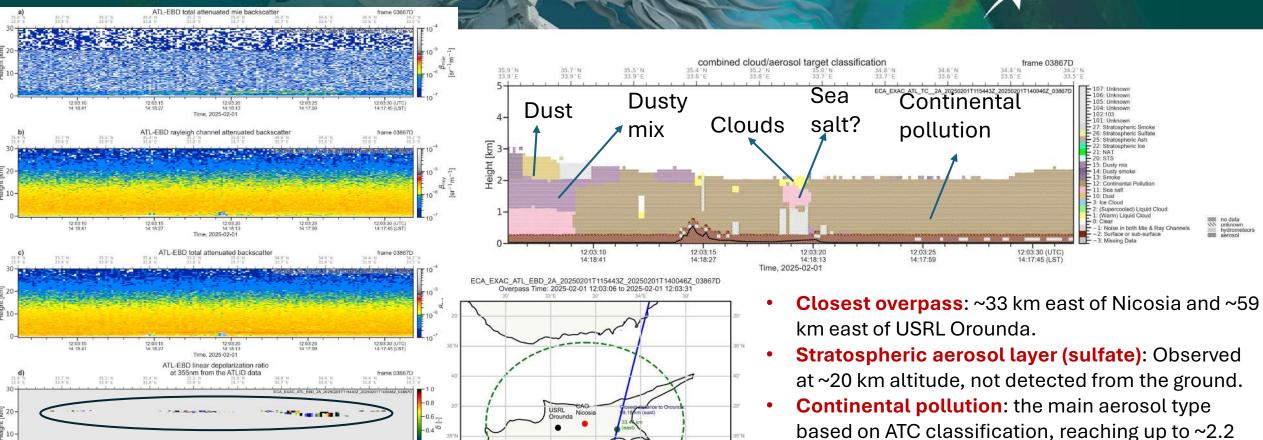
- 44 lidar profiles submitted in EVDC (July 2024 February 2025)
- 20 daytime profiles and 24 nighttime.
- **31** profiles with clear sky conditions
- Extinction coefficient @532
- Volume depolarization ratio @532

UAV Orounda and Helmos

			Distance to	Version
Overpass Timestamp	Sensor	Flight location	mid swath (km)	(POPS/UCASS)
2024-09-27T12:16:49.811356	UCASS & POPS	Orounda	194.8794	v2/v1
2024-10-14T12:59:47.409143	POPS	Helmos	139.9733	v2/
2024-10-16T12:48:18.619940	UCASS&POPS	Helmos	107	v2/v2
2024-10-25T12:44:51.326743	POPS	Helmos	183	
2024-11-01T12:51:45.324149	POPS&UCASS	Helmos	24.47496	v1/v2
2024-11-25T12:12:16.197366	POPS	Orounda	123.33	v2/
2024-12-04T12:07:20.125043	POPS&UCASS	Orounda	18.356014	v2/v1
2024-12-13T12:03:50.228929	POPS	Orounda	56.26793	v2/
2025-01-14T12:10:36.291175	POPS&UCASS	Orounda	109	v2/v1
2025-01-23T12:06:49.181911	POPS	Orounda	26	v2/
2025-02-01T12:03:00.582339	POPS&UCASS	Orounda	56	v2/v1
2025-02-08T12:10:15.936332	POPS&UCASS	Orounda	107	v2/v1
2025-02-26T12:02:33.832640	POPS&UCASS	Orounda	56	v2/v1

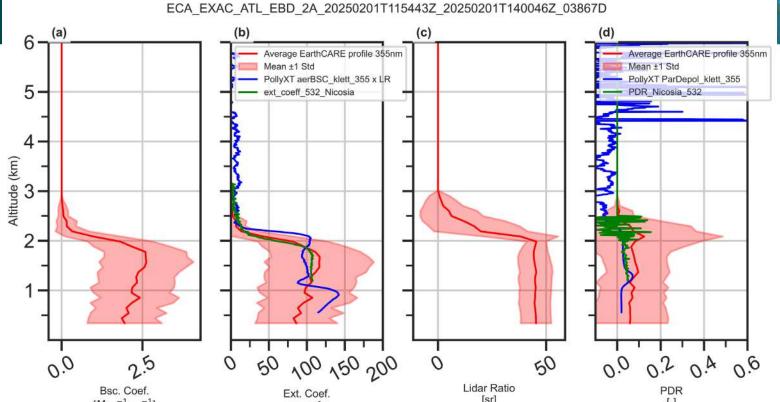
USRL Orounda and Helmos UAV profiles

- 13 profiles submitted in EVDC (September 2024 February 2025)
- 9 overpasses over Orounda and 4 over Helmos during the CleanCloud campaign
- 5 flights only with POPS, 8 combined POPS and UCASS
- 4 profiles coincident with Lidar/Nicosia measurements


Methodology

- **Data Acquisition**: ATL-EBD and ATL-TC EarthCARE products corresponding to the predicted overpass frames over Nicosia and Orounda were retrieved from ESA's Online Access Dissemination System (https://ec-pdgs-dissemination2.eo.esa.int/). **Baseline AC**
- **Spatial Selection**: EarthCARE products were extracted for overpasses occurring within 100 km of the Nicosia (Orounda) station. The distances between EarthCARE's latitude/longitude coordinates and the ground station were computed using the haversine formula.
- **Cloud Filtering**: Cloud-contaminated profiles were masked and excluded from further analysis to ensure a direct aerosol comparison. The simple classification scheme from the ATC product was used for masking the clouds.
- Profile Averaging: Mean vertical profiles of Backscatter Coefficient, Extinction Coefficient, Lidar Ratio, and Particle Depolarization Ratio were computed for the selected profiles (within 100 km) after cloud screening, enabling direct comparison with ground-based lidar and UAV measurements.

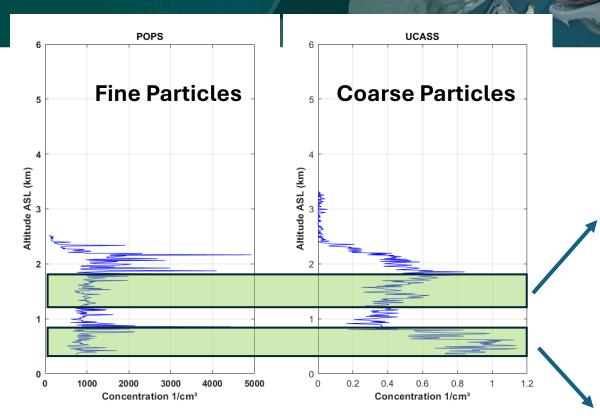
20250201 EBD and ATC EarthCARE products


- km.Sea salt and dust-dusty mix: Classified by ATC
 - over the sea to the northeast, extending up to 3 km.
 - Sea salt beneath clouds: Possible artifact?

CAO-Nicosia
USRL-Orounda

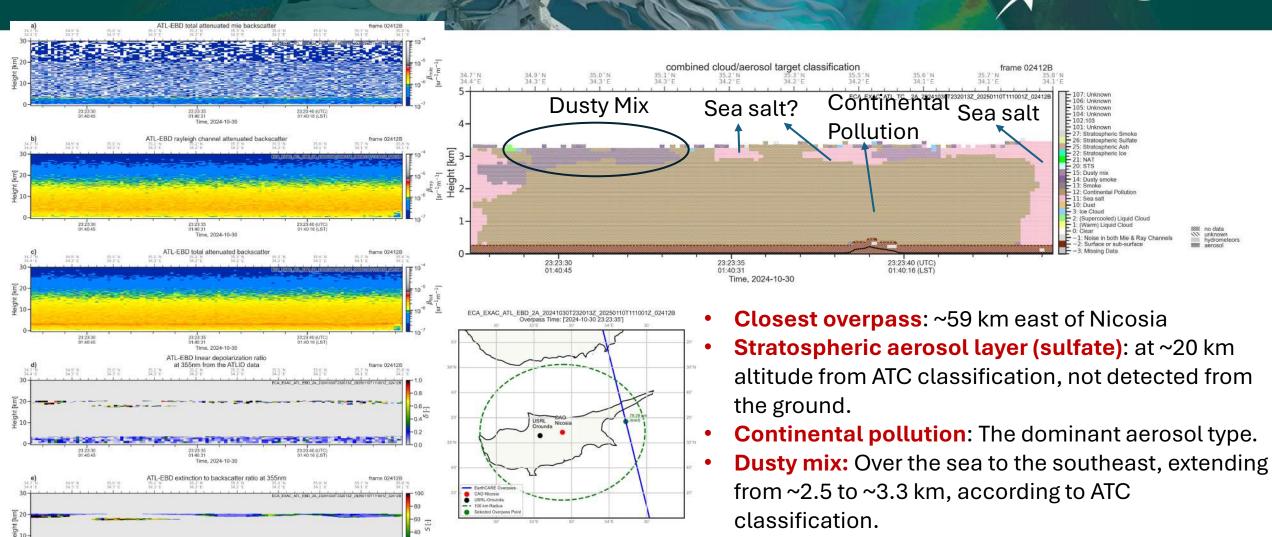
ATL-EBD extinction to backscatter ratio at 355nn

20250201 comparison with lidar measurements



- EarthCARE overpass 12:03:07 – 12:03:31
- Nicosia lidar
 average 12:00 –
 12:30 UTC
- PollyXT Limassol average 11:42 basetine AC
- Nicosia Lidar: extinction coefficient @532 nm remains ~100 Mm⁻' up to ~1.8 km, then decline reaching near-zero at ~2.4 km, low PD \$\frac{8}{2}39\h
- **PollyXt Limassol:** extinction coefficient @355 nm ~100 Mm⁻¹ up to ~2 km, reaching zero ~2.4 km, low **PDR** (~3%)
- **EarthCARE EBD**: extinction coefficient @355 nm remains ~100 Mm⁻¹ up to ~1.8 km, then decline reaching near-zero at ~2.4 km, low **PDR** (~6%)
- Both Nicosia and Limassol Lidar profiles are compatible with continental pollution in line with EarthCARE ATC classification

20250201 UAV observations



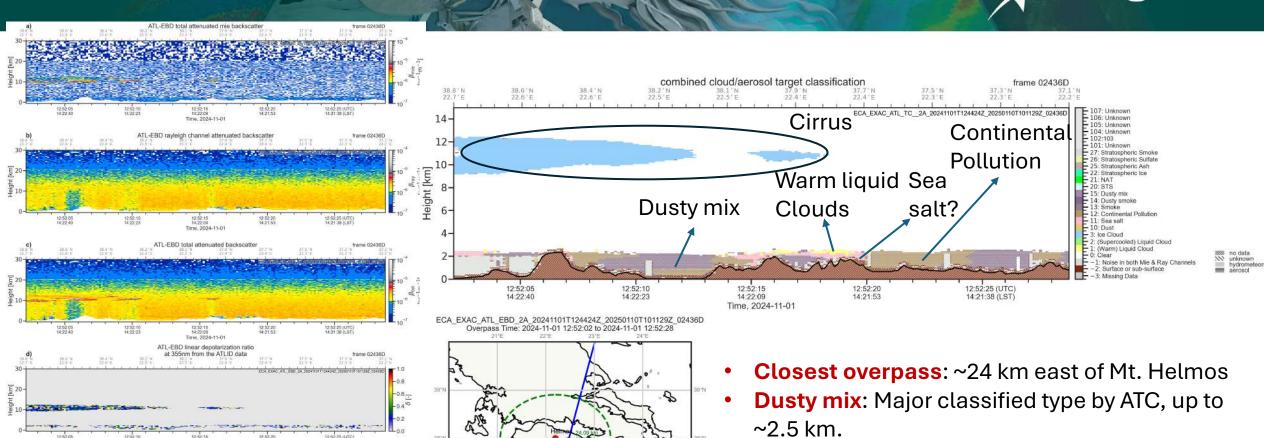
- POPS concentrations >1000 particles/cm³, UCASS significantly lower concentrations ~1 particle/cm³
- POPS: well-mixed aerosol layer confined below ~2.2 km, similar with extinction coefficient observations from lidar and EarthCARE
- **number size distribution** indicates a dominance of fine-mode particles (<0.3 μm), **consistent** with EarthCARE ATC.

20241030 EBD and ATC EarthCARE products



 Sea salt: Classified by ATC in the northeast and in some layers above continental pollution, between ~2.7 and ~3.2 km.

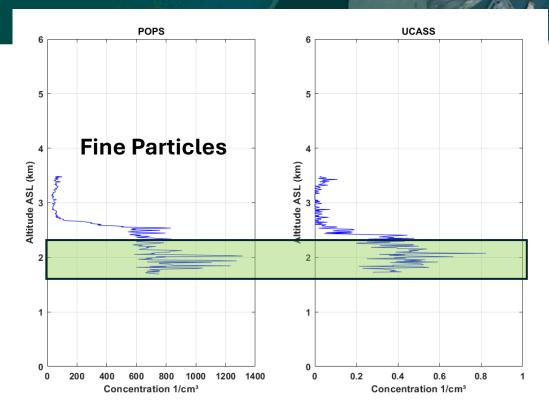
20241030 comparison with lidar measurements



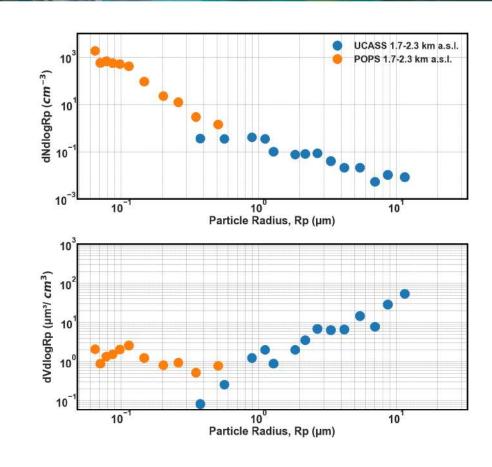
- EarthCARE overpass 23:23:29 – 23:23:44
- Nicosia lidar
 average 23:20 –
 23:30 UTC
- PollyXT Limassol average 23:00 23:59 LiTEAC
- **Nicosia Lidar**: extinction coefficient @532 nm remains ~100 Mm⁻¹ up to ~2.8 km, then decline reaching near-zero at ~3 km, no other layer above this altitude, **PDR5320**%
- PollyXt Limassol: extinction coefficient @355 nm <100 Mm⁻¹ up to ~2.5 km, elevated aerosol layer ~3.3 km, PDR:
 ~14%
- EarthCARE EBD: extinction coefficient @355 nm between ~120 and ~160 Mm⁻¹ up to ~3.2 km, then decline reaching near-zero at ~3.4 km, PDR: ~10%
- Eigher WPB and PDB values indicates fraction of the the areas of the property of the propert

20241101 EBD and ATC EarthCARE products

- **Continental pollution**: Classified by ATC too.
- Sea salt beneath clouds: Possible artifact?



 EarthCARE Overpass - 100 km Radius Closest Point


ATL-EBD extinction to backscatter ratio at 355nr

20241101 UAV observations

- POPS concentrations >1000 particles/cm³, UCASS significantly lower concentrations ~0.5 particles/cm³
- POPS: well-mixed aerosol layer confined below ~2.3 km
- UCASS: Coarse particles layer below ~2.3 km, indicative of dusty mix

Conclusions and next steps

- First analysis suggests that **ATLID**, the **ground-based lidars** and the **UAVs** show a consistent picture of the observed aerosol layers and aerosol types over Cyprus
- To be investigated: Spatial Variability in Aerosols: Averaging all cloud-free profiles within 100 km may introduce biases, as different aerosol types (e.g., sea salt over the sea) contribute to the signal, potentially affecting direct comparisons.
- ATC: Possible artifacts beneath clouds or classified as sea salt aerosol layers above continental pollution layers.
- Future data acquisition efforts: Identify Stronger Aerosol Events: Focus on cases with stronger aerosol signals (e.g., dust events) to enhance the comparison and validate EarthCARE's ability to capture high-aerosol-loading conditions.

"Until February 2025, the CYI activity for EarthCARE cal/val has been in part supported by ATMO-ACCESS through the EarthCARE cal/val pilot, however this project has now come to an end. Moreover, activity at Mt. Helmos in October 2024 received support from the CleanCloud project. From March 2025 there is an uncertainty in the amount of resources that can be dedicated to this activity, due to the current funding status, but we will do our best."

