

The EarthCARE CPR L2A C-PRO data products: Post-launch updates and performance evaluation

Bernat Puigdomènech Treserras, Pavlos Kollias and Jiseob Kim McGill University 2nd ESA-JAXA EarthCABE In-Orbit Validation

Introduction

C-PRO

L2a CPR quality control processor

C-PRO list of algorithms

· e esa

McGill **JAXA**

Introduction

C-PRO

L2a CPR quality control processor

C-PRO list of algorithms

· e esa

McGill JAXA

Reflectivity and Doppler Velocity

McGill **JAXA**

· e esa

Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud radars Alessandro Battaglia

CPR_FMR_2A

Identification and mitigation

- 1) Model the mirror images and multiple scattering tails
- 2) Identification mask
- 3) Remove the echoes based on local-correlation conditions and second-derivatives
- 4) Suppression of echoes overlapping with the actual signal is not yet implemented

 $10\log_{10}\left[P_{r}\left(r_{m}\right)\right] = 10\log_{10}\left[P_{r}\left(r_{t}\right)\right] - 4A_{surface} \rightarrow target$ $+10\log_{10}$

McGill **JAXA**

$$\label{eq:starsest} \begin{split} &\Gamma = Fresnel \ reflection \ coefficient \\ &\sigma_0 = sigma-zero \\ &\theta = beam \ width \\ &H_{sat} = satellite \ altitude \\ &H_t = height \end{split}$$

Adjust the attenuation using the actual signal to account for all different sources of uncertainty

· e esa

 $(H_{sat} - H_t)^2 \Gamma^4 \sigma_0$

CPR_FMR_2A

Identification and mitigation

- 1) Model the mirror images and multiple scattering tails
- 2) Identification mask
- 3) Remove the echoes based on local-correlation conditions and second-derivatives
- 4) Suppression of echoes overlapping with the actual signal is not yet implemented

Examples

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

$$10\log_{10}\left[P_{\mathrm{r}}\left(r_{\mathrm{m}}\right)\right] = 10\log_{10}\left[P_{\mathrm{r}}\left(r_{\mathrm{t}}\right)\right] - 4A_{\mathrm{surface}} \rightarrow \mathrm{target} \qquad + 10\log_{10}$$

McGill JAA

- $$\begin{split} &\Gamma = \text{Fresnel reflection coefficient} \\ &\sigma_0 = \text{sigma-zero} \\ &\theta = \text{beam width} \\ &H_{\text{sat}} = \text{satellite altitude} \\ &H_t = \text{height} \end{split}$$
- Adjust the attenuation using the actual signal to account for all different sources of uncertainty

· e esa

 $\left(H_{sat}-H_{t}\right)^{2}\Gamma^{4}\sigma_{0}$

 $\sigma_0 H_{sat}^2 + 11.04\Gamma$

Examples

McGill JAXA Cesa

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Jan 15, 2025

· e esa

McGill JAXA

The unambiguous range (r_u) is the maximum distance at which a target can be located to ensure that the backscattered power received corresponds to the latest transmitted pulse

Higher PRF → increased overlap of second-trip echoes

Higher PRF → increased overlap of second-trip echoes

The PRF determines the unambiguous range

· e esa

McGill JAKA

The unambiguous range (r_u) is the maximum distance at which a target can be located to ensure that the backscattered power received corresponds to the latest transmitted pulse

The PRF determines the unambiguous range

· e esa

Folding range

McGill **JAXA**

The Doppler velocity of all mirrors has an opposite sign \rightarrow the impact of overlapping artifacts affects both Z and MDV

The unambiguous range (r_u) is the maximum distance at which a target can be located to ensure that the backscattered power received corresponds to the latest transmitted pulse

Unambiguous range $r_{\mu} =$

Sampling window r_s

20

Higher PRF → better Doppler velocity measurements

Higher PRF → better Doppler velocity measurements

A higher PRF increases the sampling rate, improving Doppler velocity estimation

Comparison of Doppler Velocity Errors in Mid-Latitudes

McGill **JAXA**

•eesa

Higher PRF → increased overlap of second-trip echoes

→ better Doppler velocity measurements

The importance of developing robust techniques to remove second-trip echoes

Doppler Velocity

Using Surface Doppler Velocity to Identify Potential CPR Antenna Mispointing

- The surface, as a high-SNR measurement, can provide reliable information to assess the CPR antenna mispointing
- No induced Doppler effects (vertical motion at nadir) are expected from surfaces like the ocean or snow-covered land
- Any departure from the expected 0 m/s velocity indicates a potential antenna mispointing
- At the velocity of the satellite, small mispointing can cause significant line-of-sight Doppler velocity contamination:
- 0.01°_(7.6km/s) → 1.32m/s

McGill **JAA**

· e esa

Weekly Averaged CPR Antenna Mispointing Angles

McGill **JAXA**

(·eesa

Surface Doppler velocity observations reveal mispointing trends influenced by solar illumination cycles and thermoelastic distortions on the CPR antenna

EarthCARE's Orientation Relative to Sunlight

Direct solar illumination causes a rapid mispointing shift at daylight entry

Daylight exit B C D E F G 0.008 0.006 0.004 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.

C Daylight exit

A second shift occurs a few moments before exit, as sunlight is partially blocked by the spacecraft

EarthCARE's Orientation Relative to Sunlight

Direct solar illumination causes a rapid mispointing shift at daylight entry

Daylight exit B C D E F G 0.008 0.006 0.004 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.

C Daylight exit

A second shift occurs a few moments before exit, as sunlight is partially blocked by the spacecraft

CPR Antenna Mispointing Parametrization

New antenna mispointing correction implemented in C-PRO (baseline AC)

We use the 'climatological' parameterization and then adjust the fit on an orbit-to-orbit basis minimizing the residuals relative to the input surface observations

The parametrization allows to correct the CPR data to within 5-7 cm/s, the 90th percentile is below 0.00077° (~10 cm/s) precision - tested over 3K orbits

Time and Amplitude Shifts

· eesa

McGill **AXA**

Want to learn more? Our manuscript is coming out soon!

EarthCARE's Cloud Profiling Radar Antenna Pointing Correction using Surface Doppler Measurements

Bernat Puigdomènech Treserras, Pavlos Kollias, Alessandro Battaglia, Simone Tanelli and Hirotaka Nakatsuka

McGill EarthCARE Imagery Portal

https://web.meteo.mcgill.ca/EarthCARE/

		Earth Cloud Aerosol and Radiation Explorer			er (EarthCAR
🐯 McGill	EarthCARE Imagery Portal	Home	ATLID ~	CPR ~	About

Earth Cloud Aerosol and Radiation Explorer (EarthCARE)

Welcome to the EarthCARE Imagery Portal — your gateway to exploring and visualizing the latest data from the EarthCARE satellite, a joint mission by the European Space Agency (<u>ESA</u>) and the Japan Aerospace Exploration Agency (<u>JAXA</u>). The Portal is supported by the <u>Radar Science group</u>; funding is provided by the <u>ESA</u>

Resources	Imagery		
ESA's EarthCARE Information and Media	Atmospheric Lidar (ATLID)		
ESA's EarthCARE Research and Data Access			
JAXA's EarthCARE Special Site	ATLID Level 1b		
Z EarthCARE Science	ATLID Geolocation		
Orbit Tracking	Cloud Profiling Radar (CPR)		
orbit macking	CPR Level 1b		
<i>ℓ</i> <u>TLE</u>	CPR Antenna Pointing Characterization		
	CPR Geolocation		

WCGill EarthCARE Imagery Portal

Home ATLID ~ CPR ~

Reflectivity Uncorrected

· e esa

CPR Level 2a

McGill JAXA

Validation Using Ice Clouds

New antenna mispointing correction implemented in C-PRO (baseline **AC**)

Without Antenna Pointing Correction

With Antenna Pointing Correction

Validation Using Ice Clouds

New antenna mispointing correction implemented in C-PRO (baseline **AC**)

Without Antenna Pointing Correction

With Antenna Pointing Correction

Evaluation using campaign data

- Observation Period:
- Instrument Simulator:
- Data Filtering:

Orbital-Radar Tool (*Pfitzenmaier et al., 2024*), adjusting surface radar data to match CPR Applying the same minimum detectable signal (MDS)

McGill **XA**

· e esa

- Spatial Window: Within a 100 km radius of each site location
- Reflectivity Calibration: -1.9 dB (KAZR, NSA) and -0.7 dB (FMWC, Neumayer), derived following Kollias et al. (2019)

Jun 12, 2024 – Feb 15, 2025 (~8 months)

