Core Flow Ingredients: sensitivity to geodynamo priors
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The Inversion process to produce core surface flow models is underdetermined, thus requires additional information. It Is possible to build this prior information
from various advanced numerical geodynamo simulations, and several models describing the time evolution of the geomagnetic field exist. However, there Is no
clear overview of the relative importance of different ‘ingredients’ entering in the core flow inversion process or the robustness of the inferred flow features.

Methodology:

Pygeodyn Is a python package for time-dependent stochastic flow inversion model with a
Kalman filter: The time-evolution of the large scale potential magnetic field is described In the
spectral domain by the radial induction equation:b = A(b)u + e, whereb b, u and e store the time. We want to produce a core flow that

take the form:

u(trr1) =

spherical harmonic coefficients for the radial SV, the main field, the core surface flow and the
errors of representativeness. Using an Euler-Maruyama scheme, their time integration

u(ty) — AtY Dy (u(ty) — (u) + VAL Byw (i)

e(tpr1) = e(ty) — AtfD. (e(ty) — (€)) + VAL Bowe (1)

1) Observation points — in our
case from satellite data
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where D and B are the drift and diffusion matrices, and w are built from centred unit variance random draws from
the 71p dynamo (Aubert and Gillet., 2021). The spatial covariances converge towards those extracted from the
dynamo prior (see right). t; is the number of dynamo samples (10000) and N* is the number of samples (200). The
forecast timestep Is 1 month and analysis occurs every 6 steps.
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2) ‘True’ Magnetic Field evolves over

3) Ensemble of stochastic field forecasts

Y 4
X7

’/ V4
I, [}

from dynamo simulations for each

y based off spatio-temporal prior knowledge
observations. There are 200 ensemble

models in our flows

4) Forecasting steps for each time

nterval. We use 1 month intervals
for forecasting

5) Analysis of the ensemble of models
compared to the observation at a known
time step (multiple of forecasting timestep).

. Inour case 6 months.
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Flow Models:
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For investigating the effect of field model on the core surface flow inversion, we use three|[ ~gaos.7
different magnetic field and SV models: Kalmag (Baerenzung et al., 2020); CHAOS-7
(Finlay et al., 2020); and COV-OBS-x2 (Huder et al. 2020). There Is the potential to gain
additional information by considering the SV to a higher maximum spherical harmonic
degree than the main field, at least when continuous satellite data are available.
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0.81 32200 3221 Y Y isotropic
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Table above: Summary of the main characteristics considered for the three
magnetic field models used in this study

Geodynamo Priors:

Calculating prior information from dynamo
simulations requires long series, In order to
describe enough iIndependent
configurations of the core flow. Considering
a turn-over time in the core of the order of
100 yr, basing our statistics on ~ 100
Independent  states  requires  series
spanning O(10) kyr. We consider 2 families
of models: along the path starting from the
Coupled-Earth/Op dynamo (Aubert et al.
2017); and across the path, where the E,
number Is similar to Op but with different
forcing and starting points for the path.

Along Path
0,

Across Path

Fig right: PDF of the largest zonal (left) and non-zonal (right)
coefficients for the along path dynamos (top) and across the path
(bottom). Op and Neutral _topl shown for reference
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The results show that both the geodynamo prior and the choice of gauss coefficients used in the inversion do|
affect the resulting flow models. However, the effect of the choice of the prior has a greater impact on the|&
flow compared to the choice of field model over the satellite era but the choice of the field model has a|"
similar effect to the choice of prior in pre-satellite times. Increasing the time from the present increasesthe| | =~ =~ = = ™
difference between the field models, leading to a greater impact when changing the field model. The choice| ™ ™ ™ ™ ™ - - =% =% =% 70 =% 22
of moving along the path is always a lesser effect than moving across the geodynamo path. Increasing the| ° — e 1o i
L., over the satellite era has a comparable effect to moving along the path in the satellite era but the large| . — Kelmab, Stable topt effec(:jt <|>f
. . . . . . . . . . —— Kalmag, s1t modade
errors associated with higher degrees in the pre-satellite era minimises the difference seen when completing| —cmos ewnstond || parameter
the flow inversion. The geodynamo prior affect the flow coefficients such as the large offset in the S1T flow| £ = = Kalmag- Lov=12 Ct';]"eiﬁm”
coefficients variation in time for t,° and °t,!. The flow models converge in the satellite era. One of diagnostics| £ coefficients
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