

Consiglio Nazionale delle Ricerche Estimating high resolution daily surface PM_{2.5} over Europe using CAMS PM forecast, satellite AOD and a Machine Learning model

Shobitha Shetty^{1,2}, Philipp Schneider¹, Paul Hamer¹, Kerstin Stebel¹, Arve Kylling¹, Terje Koren Berntsen²

¹NILU, Kjeller, Norway; ² Department of Geosciences, University of Oslo, Oslo, Norway

1. MOTIVATION

- Negative health impacts from PM_{2.5}
- High spatial resolution surface information required for assessment (Chen et al, 2021)

3. METHODOLOGY

CAMS regional PM _{2.5} Forecast	t Population Density	
SRTM Elevation and Change	ERA5 PBLH	
ERA5 Wind Speed, Direction	ERA5 Land temperature	

2. OBJECTIVE

A synergistic approach entitled S-MESH (Satellite- and ML-based Estimation of Surface air quality at High

4. EVALUATION

Evaluation and comparison of $\rm PM_{2.5}$ from CAMS regional Forecast, ML prediction and CAMS interim reanalysis

	CAMS Forecast	S-MESH Prediction	CAMS Interim Reanalysis
MAE	4.36	3.62	3.4

resolution) using chemical transport models, satellites and ML to derive daily averaged surface $PM_{2.5}$

5. POLLUTION EPISODE – Comparison with Interim Reanalysis

PM_{2.5} (µg/m³)

Daily averaged station observation

¹⁰ More detailed spatial patterns from S-MESH that closely matches station observation

Additional information derived from S-MESH that matches Reanalysis but is not present in Forecast

RMSE	7.58	6.18	6.51
R ²	0.37	0.58	0.54

Improved predictions and spatial patterns over Eastern Europe compared to Forecast

Even in the absence of AOD data, additional information over eastern Europe, that is missing in Forecast is derived in ML using other parameters. The model over these regions acts as a bias corrector for Forecast

But over events of dust intrusion, model predictions can fail in certain scenario

Saharan dust intrusion not present in Forecast and when AOD data is missing, will not be captured by S-MESH model

shows comparatively lesser >50% errors in ML predictions, especially over Poland and Italy

station measurement

Saharan dust intrusion episode captured by Forecast and hence all seen in S-MESH model, matching reanalysis

CONCLUSION

- S-MESH model derives downscaled high-resolution surface PM_{2.5} information from CAMS regional PM_{2.5} forecast using other input predictors and machine learning model
- S-MESH model spatial predictions matches that of CAMS regional interim reanalysis
- Improvements in surface PM_{2.5} estimations over eastern Europe are observed in S-MESH compared to CAMS regional interim reanalysis
- S-MESH fails to capture certain pollution episodes such as dust in the absence of AOD or if not present in CAMS Forecast

ATMOS 2024 | 1-5 July 2024 | Bologna, Italy