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Example of Redundancy

Redundant information: the information which is not necessary for our task

mask 95 mask 85% mask 75%

Kaiming, He, et al.“Masked Autoencoders Are Scalable Vision Learners” arXiv:2111.06377v3 (2021).
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Sources of Redundancy in EO Imagery

EO imagery shows unique characteristics compared to natural images:

e Multi-scale scenes
e No clear “background”; every pixel contains information
e High spatio-temporal variability (seasons, climate, geography)

Why Remote Sensing Is So Redundant:

e |arge Spatial Coverage
e Repetitive Patterns Over Space & Time
e Varying Spatial Resolution & Sensor Modalities
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Motivation: MAE are scalable vision learners
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Kaiming, He, et al.“Masked Autoencoders Are Scalable Vision Learners’ arXiv:2111.06377v3 (2021).
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Key hypothesis - Redundancy as a feature

Questions:

e Assuming the existence of Redundancy:
o How can we exploit it, instead of ignoring it?

o What happens when we eliminate redundancy?
o How does this affect model performance, especially across different downstream tasks?

Our Proposition:

e EO imagery carries inherent “redundancy” that may be:

o Proven to exist
o Masked out to focus on information-rich regions

Key Hypothesis:

e By quantifying and exploiting this redundancy in EO ima%ery, we can understand the domain
better and, therefore, unlock more robust and scalable EO foundation models.
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Proposed Approach
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Overview

Tasks:

Multilabel Classification
e |mage Segmentation

Backbones:

RVIiT: Redundancy aware Vision Transformer for classification
e RUPerNet: UPerNet-style model adapted for redundancy-aware segmentation
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RVIT - Redundancy aware VIT

e T[rain ViTs with the most information-rich patches — Remove “redundant” information
via masking

e Masking strategies (per-sample):
o Dynamic — cosine sim. Threshold
m Varying num patches per sample
o Static — Top-k% of the least similar patches
o Random

Patch masking
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RUPerNet

Decoder

[ Redefine Token sequence }
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Tete, Xiao, et al. “Unified Perceptual Parsing for Scene Understanding”, arXiv:1807.10221 (2018)
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https://arxiv.org/abs/1807.10221

Evaluation Framework
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Overview

Tasks:

e Multilabel Classification
e |mage Segmentation

Backbones:

e RVIiT: Redundancy aware Vision Transformer for classification
e RUPerNet: UPerNet-style model adapted for redundancy-aware segmentation

Datasets and Metrics:

e BigkarthNet: macro Multilabel Average Precision, weighted Multilabel F1-score, macro Multilabel

F1-score
e MLRSNet: micro Multilabel Average Precision, weighted Multilabel F1-score, micro Multilabel F1-

score
e \Noody: micro Multiclass F1-score, macro Multiclass F1-score, weighted Jaccard index

e Flair: micro Multiclass F1-score, macro Multiclass F1-score, weighted Jaccard index
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Datasets

: Num of Spatial
Dataset Input Modality Sensor ML Problem Classes EO task Resolution - Coverage
BigEarthNet MS/SAR 1, 82 Multi-label 19 LULC 10m 120x120 Europe
Classification Classification
Mult Multi-label Semantic
MLRSNet RGB Classification 60 Scene ~ 10-0.1m 256x256 Global
Sensor .
Understanding
Woody RGB Aerial image 4 Tree species 500cm 004224 Chile
Segmentation detection
Flair RGB/NIR/DEM  Aerial Image 19 LULC 20cm 512x512 France
Segmentation Classification
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Examples

BigEarthNet MLRSNet

mask top65% original Image mask top60% original Image

RSLab @,\

Redundancy Investigation: Evaluation Framework Remate Sensing Laborator

National Technical University of Athens




Preliminary Results
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Multilabel Classification Results

» BigEarthNet, top-k%, Vit-tiny architecture pretrained on ImageNet
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Image Segmentation Results

« Flair, top-k%, Vit-tiny architecture pretrained on ImageNet
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Implications & Future Steps
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Implications to Foundation Models

Unlocking Efficiency without Sacrificing Performance:

e Robust Performance under Heavy Masking
Minimal precision, accuracy and F1-score loss up to 60% masking in all tasks and in some
cases up to 85% masking.

e Path to Efficient Large-Scale Models
Pruning redundant patches at the sample level significantly reduces compute and memory
needs, making it feasible to train much larger transformers on EO data.

e Patch-Level Focus for Smarter Learning
Concentrating on the most informative regions push models toward learning richer, more
generalizable features, emphasizing quality of input over quantity.
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Future steps

What’s next?

e Deepen Analysis of Preliminary Findings
o Develop insight-driven masking strategies and validate across additional EO datasets
e Fine-Tune Segmentation Tasks
o Perform hyperparameter optimization on RUPerNet
e Quantify Efficiency Gains
o Systematically report memory footprint and training speed-up under varying mask ratios
e Explore Research Questions:
o (Can we achieve comparable downstream performance when pretraining on smaller,
information-rich subsets of EO data”

o How does per-sample redundancy correlate with generalization across tasks, modalities, and
geographies?
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Q&A
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