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Redundancy Investigation: Motivation

Example of Redundancy 

mask 95 mask 85% mask 75%                  original

Kaiming, He, et al.“Masked Autoencoders Are Scalable Vision Learners’’ arXiv:2111.06377v3 (2021).

Redundant information: the information which is not necessary for our task
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Redundancy Investigation: Motivation

Sources of Redundancy in EO Imagery

EO imagery shows unique characteristics compared to natural images:

● Multi-scale scenes                                                          

● No clear “background”; every pixel contains information

● High spatio-temporal variability (seasons, climate, geography)

Why Remote Sensing Is So Redundant:

● Large Spatial Coverage

● Repetitive Patterns Over Space & Time

● Varying Spatial Resolution & Sensor Modalities
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Redundancy Investigation: Motivation

Motivation: MAE are scalable vision learners

Kaiming, He, et al.“Masked Autoencoders Are Scalable Vision Learners’’ arXiv:2111.06377v3 (2021).
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Redundancy Investigation: Motivation

Key hypothesis - Redundancy as a feature

Questions:

● Assuming the existence of Redundancy:
○ How can we exploit it, instead of ignoring it?
○ What happens when we eliminate redundancy?
○ How does this affect model performance, especially across different downstream tasks?

Our Proposition:

● EO imagery carries inherent “redundancy” that may be:
○ Proven to exist
○ Masked out to focus on information-rich regions

Key Hypothesis:

● By quantifying and exploiting this redundancy in EO imagery, we can understand the domain 
better and, therefore, unlock more robust and scalable EO foundation models.
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Redundancy Investigation: Proposed Approach

Overview

Tasks:

• Multilabel Classification
• Image Segmentation

Backbones:

• RViT: Redundancy aware Vision Transformer for classification
• RUPerNet: UPerNet-style model adapted for redundancy-aware segmentation
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Redundancy Investigation: Proposed Approach

RViT - Redundancy aware ViT

Patch masking

● Train ViTs with the most information-rich patches → Remove “redundant” information 
via masking

● Masking strategies (per-sample):
○ Dynamic → cosine sim. Threshold

■ Varying num patches per sample
○ Static → Top-k% of the least similar patches
○ Random
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Redundancy Investigation: Proposed Approach

RUPerNet

Hierarchical 
Features

Decoder

Redefine Token sequence

RViT

Tete, Xiao, et al. “Unified Perceptual Parsing for Scene Understanding”, arXiv:1807.10221 (2018)

https://arxiv.org/abs/1807.10221
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Redundancy Investigation: Evaluation Framework

Overview

Tasks:

• Multilabel Classification
• Image Segmentation

Backbones:

• RViT: Redundancy aware Vision Transformer for classification
• RUPerNet: UPerNet-style model adapted for redundancy-aware segmentation

Datasets and Metrics:

• BigEarthNet: macro Multilabel Average Precision, weighted Multilabel F1-score, macro Multilabel 
F1-score

• MLRSNet: micro Multilabel Average Precision, weighted Multilabel F1-score, micro Multilabel F1-
score

• Woody: micro Multiclass F1-score, macro Multiclass F1-score, weighted Jaccard index
• Flair: micro Multiclass F1-score, macro Multiclass F1-score, weighted Jaccard index
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Redundancy Investigation: Evaluation Framework

Datasets

Dataset Input Modality Sensor ML Problem
Num of 
Classes

EO task
Spatial 

Resolution
Image Size Coverage

BigEarthNet MS/SAR S1, S2
Multi-label 

Classification
19

LULC 
Classification

10m 120x120 Europe

MLRSNet RGB
Multi 

Sensor

Multi-label 
Classification 60

Semantic 
Scene 

Understanding
≈ 10-0.1m 256x256 Global

Woody RGB Aerial
Image 

Segmentation
4

Tree species 
detection

50cm 224x224 Chile

Flair RGB/NIR/DEM Aerial
Image 

Segmentation
19

LULC 
Classification

20cm 512x512 France 
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Redundancy Investigation: Evaluation Framework

Examples

BigEarthNet

mask top65% original Image

MLRSNet

mask top60% original Image
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Redundancy Investigation: Preliminary Results

Multilabel Classification Results
• BigEarthNet, top-k%, Vit-tiny architecture pretrained on ImageNet

• MLRSNet, top-k%, Vit-tiny architecture pretrained on ImageNet
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Redundancy Investigation: Preliminary Results

Image Segmentation Results
• Flair, top-k%, Vit-tiny architecture pretrained on ImageNet

• Woody, top-k%, Vit-tiny architecture pretrained on ImageNet
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Redundancy Investigation: Implications and Future Steps

Implications to Foundation Models

Unlocking Efficiency without Sacrificing Performance:

• Robust Performance under Heavy Masking
Minimal precision, accuracy and F1-score loss up to 60% masking in all tasks and in some 
cases up to 85% masking.

• Path to Efficient Large-Scale Models
Pruning redundant patches at the sample level significantly reduces compute and memory 
needs, making it feasible to train much larger transformers on EO data.

• Patch-Level Focus for Smarter Learning
Concentrating on the most informative regions push models toward learning richer, more 
generalizable features, emphasizing quality of input over quantity.
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Redundancy Investigation: Implications and Future Steps

Future steps

What’s next?

● Deepen Analysis of Preliminary Findings 

○ Develop insight-driven masking strategies and validate across additional EO datasets

● Fine-Tune Segmentation Tasks 

○ Perform hyperparameter optimization on RUPerNet

● Quantify Efficiency Gains 

○ Systematically report memory footprint and training speed-up under varying mask ratios

● Explore Research Questions:

○ Can we achieve comparable downstream performance when pretraining on smaller, 

information-rich subsets of EO data?

○ How does per-sample redundancy correlate with generalization across tasks, modalities, and 

geographies?
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