

EarthCARE/MSI Level-2 Algorithms: Description and Synergistic Analysis Plan with MSI and CPR

Takashi Nakajima, Minrui Wang, and Panuwong Wongnim Tokai University, Research and Information Center (TRIC)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Algorithm

CFOD

Introduction

Clouds exert an important influence on the water and energy balances and process, thus, more observations are required for understanding of cloud lifecycle.

- e.g. Randall et al. (1984) pointed out that a mere 4% increase of the Earth's area covered by lowlevel clouds, compensates for a projected 2–3 K rise in global temperature due to a doubling of CO₂.
- We have long history of the passive sensing of clouds, using the NOAA, ADEOS-2, TRMM, Terra/Aqua, GCOM-C, and Geostationary satellites …

Recently, active sensing open the door toward better understanding of clouds, in terms of cloud evolution process.

Directions of the cloud research

 □ Long term record → climate change study AVHRR, MODIS, VIIRS, GLI, SGLI, Geostationary...
 □ 3-D observation → cloud evolution process CloudSat, Calipso, EarthCARE, + Passive sensors
 □ Observation + Model simulation...

 $\overline{\Box}$

Introduction

Strategy

Strategy of cloud observation

JAXA

· e e sa

MSI, Cloud product process

Introduction

JAXA

·eesa

CLAUDIA algorithm (for cloud flags)

5 individual threshold tests
Merge into a Clear Confidence Level (CCL) Q [0.0, 1.0]

 A similar concept with the MODIS standard algorithm (MOD06) but designed for a neutral decision, less bias to cloudy or clear.

Cloudy

Clear

• Used for GCOM-C/SGLI, Himawari/AHI and the EarthCARE/MSI

Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010710.
Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616

CFODD

Algorithm

CFOD

CAPCOM algorithm (for cloud properties)

- Based on the Nakajima-King diagram (VIS band, NIR band)
- Newton method for finding the best solution
- Used for Midori-II/GLI, GCOM-C/SGLI, TANSO/CAI, Himawari/AHI and the EarthCARE/MSI
- Retrieval accuracy (by simulation)
 Less than 1 % and 3 % for COT and CDR
 when COT=16, CDR=16µm.

Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52, 4043-4059.

Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14, 2054-2068.

MSI L2a Cloud Product

48%

021012212146

20

51%

Cloud Optical Thickness (COT)

Summar

Cloud Droplet Radius (CDR) (band4=2.2µm) Cloud Top Temperature (CTT)

A Real MSI Data 21:49-22:00(UTC), Aug. 22, 2024

MSI L2a Cloud Product

112.720

75.4400

38,1600

9.97e+036 fill value

Cloud Optical Thickness (COT) 21:49-22:00 (UTC), Aug. 22, 2024

https://zoom.earth/storms/gilma-2024/

Summary

When combined with CPR...

When combined with CPR....

^{09:12 ~ 09:24, 30} Jan 2025, 03834E

To do in future

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Algorithm

New visualization of the radar reflectivity, CFODD (Contoured Frequency by Optical Depth Diagram)

Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci., 67, 1897-1907.

Algorithm

CFODD

Summary

Visualizing Cloud Evolution from space, CFODD

Difference of the CFODD in Thailand, La Niña and El Niño

Fig. 3. Average rainfall divided into two distinct periods, dry season and wet season, each spanning 6 months. The error bars represent the variation in monthly rainfall within each period, influenced by ENSO phases from 1991 to 2022.

Panuwong Wongnim, Minrui Wang, and Takashi Y. Nakajima, 2024: Investigation of characteristics of warm clouds in Thailand under different climate patterns with contoured frequency by optical depth diagrams and ground-based meteorological data, *JMSJ*, **102**(6)

Fig. 8. CFODDs classified by R_e with threshold values between 4 μ m and 36 μ m for Thailand under La Niña phase.

During La Niña event (=rainy) ¹⁵

Fig. 9. CFODDs classified by R_e with threshold values between 4 μ m and 36 μ m for Thailand under El Niño phase.

During El Niño event (=less rain)

Summary

- Clouds exert an important influence on the water and energy balances and process; thus, more observations are required for understanding of cloud lifecycle.
- Need more observations of clouds from satellites for
 - generating cloud climatology database
 - investigating cloud evolution process
- □ The CFODD presents
 - cloud evolution process, clearly.
 - useful for model evaluations.
 - Need data longer than 1-2 years for generating the CFODDs.
- A Doppler capability of the EarthCARE/CPR improves our understanding of cloud evolution process.
- □Validation of MSI cloud products have started. More efforts are needed.

A New SkyCamera system at Shibuya Campus

A foldable shadow blade, inside of dome

Thanks for your attention

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy