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Background — Retrieval, inverse problem

O Find the atmospheric parameters x (surface temperature, temperature, water vapor, ozone, surface
spectral emissivity) that best reconstruct the measured spectrum y.
! VERY ILL-CONDITIONED PROBLEM

d Formulated as a Bayesian inference problem and solved using the OPTIMAL ESTIMATION METHOD?:

x = argminz||Ly (y = FCO)||) +3 Lo — xa)II3,

where S;' =L} L, and S;*' = L},L, are the inverses of the variance-covariance matrices (VCM) of the
measurements y and the a-priori information x,, respectively.

O Minimization carried out using Gauss Newton + Levenberg-Marquardt technique.

O 2Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, https://doi.org/10.1142/3171, 2000.
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Objectives: the RETRIEVAL problem

The computational cost of a full-physics method is too large to get Near Real Time (NRT) data analysis

l

use of data-driven techniques to speed up the inversion.

Development of innovative and fast mathematical techniques to:

O exploit the huge amount of data that will be available;

O provide a flexible method, easy to apply given a database of measurements and some a-priori
information.

— == ] 4= 2 ] E = ] = =" W )} ¥ - F =EE » THE EUROPEAN SPACE AGENCY



New method: scheme

1) Approximation of the RT inverse operator with a linear operator trained using a database of
FORUM simulated measurements (completely data-driven phase);
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New method: scheme

1) Approximation of the RT inverse operator with a linear operator trained using a database of
FORUM simulated measurements (completely data-driven phase);

2) Incorporation of a-priori information into data-driven solution (regularization technique);
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New method: scheme

1)

2)
3)

Approximation of the RT inverse operator with a linear operator trained using a database of
FORUM simulated measurements (completely data-driven phase);

Incorporation of a-priori information into data-driven solution (regularization technique);

Estimation of the optimal regularization parameters using a neural network trained with a database
of pre-computed optimal parameters (second training phase).
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1. Data-driven model

O Approximation of the RT inversion with a linear operator Z trained with simulated FORUM measurements
A Training set 1 (January and July 2021, 12:00, clear sky)3
» X =|xq,X9,...,xy] 2 N atmospheric scenarios

> Y =1y, ¥ ., yn] 2 N simulated FORUM spectra.
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3H. Hersbach et al. “The ERAS5 global reanalysis”. In: Quarterly Journal of the Royal Meteorological Society 146.730 (2020), pages 1999—-2049. doi: https://doi.org/10.1002/qj.3803
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https://doi.org/10.1002/qj.3803

J Method
min f(Z) = min[lx — ZY||%

6f T T T T
~ = —2L5LyXY" + 215 L, ZYY

A minimizer Z of f solves ZYYT = XYT.

We can express:
XY+,

Then, Zy.

* Moore-Penrose pseudoinverse

Let M be a matrix of rank k with singular value decomposition M = UXVT, the Moore-Penrose
pseudoinverse of M is given by
Mt=vzUuT,
~ 1 1
Y =diag <—,—,

01 O3
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Mean signed (blue) and unsigned (orange) errors for the global test set 1
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2. Tikhonov regularization — Bilevel Optimization problem

A. Inner problem

1 Additional priori information:

X(A) = arg mxin% ||Lx(x — ZAy)HE + % |(diag(A)L,(x — x)||5, with

Sc1 = LLL, inverse of the experimental VCM,

x, generated from the matrix S,4, with S;* = LT L,

4defined by the UK MetOffice for assimilation of IASI products into the operational Numerical Weather Prediction (NWP) system.
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B. Outer problem

1 Computation of the optimal regularization parameters for test set 1 (now training set 2):

1X(D)—Xtruell2

It ruell2

A°Pt = arg min

1 Optimization carried out using interior points method.

1 5 minimizations of the inner problem changing the outer problem, one for each atmospheric component
—> one 5x1 parameter vector for each minimization - stored in a 5x5 matrix denoted by M.

1 Strong coupling between the 5 components - aggregation of all the information in M and extraction
of the most correlated parameters vector 1°Pt with the first two left singular vectors:

M = USVT, 2%t = ~U 0, + U,0;.
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3. Regularization parameter estimation

J Assume there exists a well-defined mapping @ (%, x,) = A. r— unique network for
: : all 5 components
[ Set a NEURAL NETWORK parametrized by 6 to approximate &.

. . J . L
) Given training data (J?j, (xa)j,/lgpt) the following equation is solved:
j=1

= argmint 51, || (5 G257, 0)

Neural Network INPUT: X — Xxg4
Neural Network OUTPUT (prediction):  log(A™)
Neural Network ARCHITECTURE: 3 layers (dim: 15,10,5).
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Neural Network performance for training set 2
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Comparison for a single case in the training set 2

Temperature - testCase:255. A% =5.4614. A" =1.1824
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Results — Aggregated cases

Mean signed (normal) and unsigned (bold) errors for a global test set 2 vs Apriori errors (dotted)
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Future directions

 Comparison with full-physics methods.
 Extension to all-sky conditions.
1 Adaptation for use with different instruments.

O Application of a similar data-driven approach with additional a-priori information to the direct
problem.

 Incorporating this work into the analysis of fast radiative transfer models for data assimilation
techniques into climate and meteorological models as part of the PNRR-EMM project.

Thanks to INDAM-GNCS, Math Research Group, for financial support
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Introduction —= FORUM mission

d FORUM! (Far-infrared Outgoing Radiation Understanding and Monitoring) is a Fourier Transform
Spectrometer (FTS) selected as the ninth Earth Explorer mission by the European Space Agency in
2019.

Q It will provide interferometric measurements in the Far-InfraRed (FIR) spectrum (100-1600 cm
region), constituting 50% of Earth’s outgoing longwave flux.

L Accurate Top Of the Atmosphere (TOA) measurements in the FIR are crucial for improving climate
models.

LL. Sgheri et al. “The FORUM end-to-end simulator project: architecture and results”. In: Atmospheric Measurement Techniques 15.3 (2022), pages 573-604. doi: 10.5194/amt-
15-573-2022. url:
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https://amt.copernicus.org/articles/15/573/2022/

Background

min ||y — F(x)||

—>
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Background — Radiative Transfer (RT), forward model

I % (z) =—a,(p,T,c)l,(z) + a,(p,T,c)B,(T)

o IV(ZO) — IVoI

B(Ty)(1—e ™) T e ™~

for each atmospheric layer, with, v wavenumber, z altitude, I intensity of radiation,

B Planck function, a attenuation coefficient, p pressure, T temperature, ¢ gases concentration.

N

— il N
I(zy) = |eB(Tg) + (1 —¢€) EB(Ti)(l —e7Ti)e 2=l e 2= T ' BI)(1—e ) §e
i=1

I B(T)(1—e™)8e ™ W |§

ZO ry

N
+ Z B(Tl)(l — B_Ti)e_ Zﬁ'V:i"'l T , 4 D Iy=eBT+A -0l
=1

Ip = 2 B(T)(1 — e~1)e 24"
with 7 optical depth and Ty Earth surface temperature.
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