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Why do we need uncertainty estimation? B + Previous work on uncertainty-aware change detection for natural disaster response has shown the benefits of integrating uncertainty

estimation into our change detection pipeline while improvingits reliability and providing a qualification of re

QO Models: over-/under confidence

Q Reliability, interpretability & qualification of results

QO Downstream-tasks benefit from reliability:

ster response (building damage)

« Urban change detection (LU/LC monitoring,
climate change adaptation & risk prevention)

* Theintegration of dedicated UE methods helped in improving model calibration & uncertainty quantification when training CNN

architectures from scratch, especially under distribution shift

+ Natu
+ Aim:Integration of uncertainty estimationinto transferlearning with pre-trained geospatial Foundation Models

* Builtuponexistingopen-source frameworks: PANGAEA, PEFT, Lightning UQ-Box with additional metrics for uncertainty quantification
Variety of uncertainty estimation (UE) methods for

modern deep learning architectures [6], e.g. « Partially stochastic networksand PEFT methods for subspace Bayesianinference addressing the FM’s high dimensional parameter-space

Q Approx. Bayesian Neural Networks (BNN) * BNN-Decoder, Decoder-Sub-Ensembles, Checkpoint-Ensembles for frozen encoder training
0 Ensemble Learning (EL)

Q Test Time Augmentations (TTA) *  Usingreduced parameter subspaces of PEFT methods (LoRA)to obtain efficientuncertainty estimation

Integration into Fine-tuning of geospatial Foundation Models? s

JNCERTAINTY AETHODOLOGY

By adding baseline UE methods from the aforementioned categories(BNN Variational Inference - Bayes By Backprop [3], Monte Carlo StochasticV ging Gaussian (SWAG) [7] with LoRA has shown promising
Dropout [1,2], Deep Ensembles[4], TTA), we try to capture different types of uncertainty: fine-tuning resultsin LLMs and depth estimation

. Uncertainty (model uncertainty): Due to insufficient training data (e.g. unseen 0.0.d. samples)

. Uncertainty (data uncertainty): Due to ambiguity or noise inherent in our observations (data inherent randomness)

« Together: Predictive Uncertainty of the network + Builds on Stochastic Weightaveraging (avg .of model weights over trajectory of SGD)

. . L »# generalization, robustness
Differentuncertainty quantification (UQ) measuresexist to representthe model's uncertainty estimation [2]

+ Treats SGDiterates as samples from a Gaussiandistribution

Q Predictive Entropy (PE;
+ Represents the entropy of the predictive distribution #information in trajectory approximates posterior distribution over weights
« Captures predictive uncertainty, which combines both epistemic and aleatoric uncertainties
+ FitsaGaussian distribution tothe firsttwo moments of SGD iterates SWAG
a v Information (M) variance, mean class-wise standard deviation:

*+ Rather capture epistemic or model uncertainty, stemming from the disagreement between T (stochastic) forward passes
« Canyield essential indicators for out-of-distribution detection (OOD), guiding human annotators, or active learning

INFERENCE
Prediction
» LoRA-SWAG performs SWAG on the parameter-efficient subspaces constructed by SWAG-LoRA. lllustration adapted from
D ﬁ%@ ’ C T the low-rank approximationsof linear layersin Attention-Blocks https://arxiv.org/abs/2405.03425

Nais .

VALUATION cAL va

Model confidence should match the segmentationaccuracy- calibration quality (CAL). « Measuring DNN's performance by considering their uncertainty quantification (UQ) capabilities

Brier-Score (Br): MSE between predicted probabilitiesand labels over all samples/pixels n for each class k *  The Patch Accuracy vs Patch Uncertainty (PAvPU) [5] metric aims to capture these properties by two main conditional
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Especially in binary classification/segmentation cases with severe class-imbalance anda dominating
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Expected Calibration Error (ECE)based on reliability diagrams (accuracy as function over confidence) ) Tabels Predicions. ‘Uncerainty map. !
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majority class, it can make sense to use the Stratified-Brier-Scoreinstead
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* Pixel-wisepredictions are partitioned into m equally-sized bins based on confidence value

*  ECE:summingup the weighted average of differences between acc. and confidence / bin * Derived from confusionmatrix of [inJaccurate and [un]certain patches

* Results strongly dependon choice of uncertainty threshold
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JMIMARY & FIRST RESULTS
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QUALITATIVE
EXAMPLES

* Firstcomparison of different methods using available datasets for natural disaster response, urban planning & change detection
* Change detection & natural disaster response: SpaceNet, HLS BurnScars, xBD/xView2
*  HR& VHR multiclass semantic segmentation (urban): SegMunich (Sentinel-2), Digitanie (Pléiades, manually annotated)

Example Digitanie train France, test San-Francisco and Buenos Aires):
* Dedicatedtest scenarios to compare network calibration and uncertainty quantification under different data constraints:

Ground to prediction (right) and from
aPEFT SWAG-LoRAmodel(Scale-MAE encoder). Generally high PE (leff] under geographic
shift combines both types of uncertainty, whereas M {right) rather captures unusual 00D
samples, egriangle-shaped pool, sandy soccer field & untypical buiding structures

* Datasparsity: 50 %, 10 % subsampled datasets (stratified / random)

* Domain shift: geographically divided subsets

* Initial observation: Partially stochastic networks and PEFT methods for subspace Bayesianinference constitute a baseline for
parameter-efficientuncertainty estimationin the foundation model fine-tuning context, but:

* Inthe case of fine-tuninggeospatial FM’s, the improvementin uncertainty quantification seemsto be less impactful as for the
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integration of dedicated UE approaches whentraining basic model architectures (e.g. Unet) from scratch
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Both, simple approaches like Sub-/Checkpoint-Ensemblesor MCDO and BNN/(LoRA)-SWAGcan slightly improve reliability,

HLS

QUANTITATIVE (wmop) model calibrationand predictive performance for certain cases
EXAMPLES | [N | ENSEVBLE . ) R
Ut 6079 6241 6200 6135 However: The firstresults do not indicate general, and sigr 1 model calibration and uncertainty
dedicated UE o \proving the Brier (Strat) ¢ 053 047 046 050 quantification over multiple test configurations -> the scenario-dependent results require more benchmarking
fine-tuning results under distribution shift
The evaluation considers modified datasets thatntroduce a geographic shif between the Plwon)
train & test set, eg. N . L N L N . . N . - .
Digitane: _ * Dedicated metrics for model reliability can help in quantifyingmodel calibration and uncertainty estimation capabilitiesand in
« Train (France) - Strasbourg, Arcachon Sirriz, Morfpeller, Toulouse, Paris LoRA-Classic 4792 047 013 084 077 ki b . o . ;
« Test - Caro, San-Francisco,Con-Tho, Buenos Afres hod i
airo, rancisco, Can-Tho, Buenos Ares R ey i o o e picking a suitable uncertainty 1method for specific

HLS Bum-Scars (modified.Train (west coast) testeast coast)
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