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Why do we need uncertainty estimation? 

 Models: over-/under confidence
 Reliability, interpretability & qualification of results
 Downstream-tasks benefit from reliability:

• Natural disaster response (building damage)
• Urban change detection (LU/LC monitoring, 

climate change adaptation & risk prevention)

Variety of uncertainty estimation (UE) methods for 
modern deep learning architectures [6], e.g.

 Approx. Bayesian Neural Networks (BNN)
 Ensemble Learning (EL)
 Test Time Augmentations (TTA)

Integration into Fine-tuning of geospatial Foundation Models? 
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• Model confidence should match the segmentation accuracy- calibrationcalibrationcalibrationcalibration quality (CAL):

• Brier-Score (Br): MSE between predicted probabilities and labels  over all samples/pixels n for each class k

• Especially in binary classification/segmentation cases with severe class-imbalance and a dominating 

majority class, it can make sense to use the Stratified-Brier-Score instead

• Expected Calibration Error (ECE) based on reliability diagrams (accuracy as function over confidence) : 

• Pixel-wise predictions are partitioned into m equally-sized bins based on confidence value
• ECE: summing up the weighted average of differences between acc. and confidence / bin

• Measuring DNN’s performance by considering their uncertainty quantificationuncertainty quantificationuncertainty quantificationuncertainty quantification (UQ) (UQ) (UQ) (UQ) capabilities

• The Patch Accuracy vs Patch Uncertainty (PAvPU) [5] metric aims to capture these properties by two main conditional 

probabilities on a patch-level:

• Derived from confusion matrix of [in]accurate and [un]certain patches

• Results strongly depend on choice of uncertainty threshold 

By adding baseline UE methods from the aforementioned categories (BNN Variational Inference - Bayes By Backprop [3] , Monte Carlo 

Dropout [1,2], Deep Ensembles [4], TTA) , we try to capture different types of uncertainty:

• Epistemic Uncertainty (model uncertainty): Due to insufficient training  data (e.g. unseen o.o.d. samples)

• Aleatoric Uncertainty (data uncertainty): Due to ambiguity or noise inherent in our observations (data inherent randomness)

• Together: Predictive Uncertainty of the network

Different uncertainty quantification (UQ) measures exist to represent the model‘s uncertainty estimation [2]:

 Predictive Entropy (PE):
• Represents the entropy of the predictive distribution
• Captures predictive uncertainty, which combines both epistemic and aleatoric uncertainties.

 Mutual Information (MI), variance, mean class-wise standard deviation:
• Rather capture epistemic or model uncertainty, stemming from the disagreement between TTTT (stochastic) forward passes
• Can yield essential indicators for out-of-distribution detection (OOD), guiding human annotators, or active learning
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• First comparison  of different methods using available datasets for natural disaster response, urban planning & change detection

• Change detection & natural disaster response: SpaceNet,  HLS BurnScars , xBD/xView2

• HR & VHR multiclass semantic segmentation (urban): SegMunich (Sentinel-2), Digitanie (Pléiades, manually annotated)

• Dedicated test scenarios to compare network calibration and uncertainty quantification under different data constraints:

• Data sparsity: 50 % , 10 % subsampled datasets (stratified / random)

• Domain shift:  geographically divided subsets

• Initial observation: Partially stochastic networks and PEFT methods for subspace Bayesian inference constitute a baseline for

parameter-efficient uncertainty estimation in the foundation model fine-tuning context, but:

• In the case of fine-tuning geospatial FM’s, the improvement in uncertainty quantification seems to be less impactful as for the 

integration of dedicated UE approaches when training basic model architectures (e.g. Unet) from scratch 

• Both, simple approaches like Sub-/Checkpoint-Ensembles or MCDO and  BNN/(LoRA)-SWAG can slightly improve reliability, 

model calibration andandandand predictive performance for certain cases

• However: The first results do not indicate general, consistent and significant improvements in model calibration and uncertainty 

quantification over multiple test configurations -> the scenario-dependent results require more benchmarking 

• Dedicated metrics for model reliability can help  in quantifying model calibration and uncertainty estimation capabilities and in 

picking a suitable uncertainty estimation method for specific use-cases

QUALITATIVE 
EXAMPLES 

• Previous work on uncertainty-aware change detection for natural disaster response has shown the benefits of integrating uncertainty 

estimation  into  our change detection pipeline while improving its reliability and providing a qualification of results

• The integration of dedicated UE methods helped in improving model calibration & uncertainty quantification when training CNN 

architectures from scratch, especially under distribution shift

• Aim: Integration of uncertainty estimation into transfer learning  with pre-trained geospatial Foundation Models  

• Built upon existing open-source frameworks: PANGAEA, PEFT, Lightning UQ-Box with additional metrics for uncertainty quantification

• Partially stochastic networks and PEFT methods for subspace Bayesian inference addressing the FM’s high dimensional parameter-space

• BNN-Decoder, Decoder-Sub-Ensembles, Checkpoint-Ensembles for frozen encoder training

• Using reduced parameter subspaces of PEFT methods  (LoRA) to obtain efficient uncertainty estimation 

• Stochastic Weight Averaging Gaussian (SWAG) [7] with LoRA has shown promising  

fine-tuning results in LLMs and depth estimation 

• Builds on Stochastic Weight averaging (avg .of model weights over trajectory of SGD ) 

 generalization, robustness

• Treats SGD iterates as samples from a Gaussian distribution

 information  in trajectory approximates posterior distribution over weights

• Fits a Gaussian distribution to the first two moments of SGD iterates

 LoRA-SWAG performs SWAG on the parameter-efficient subspaces constructed by 
the low-rank  approximations of linear layers in  Attention-Blocks
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SWAG-LoRA. Illustration adapted from
https://arxiv.org/abs/2405.03425

DIGITANIE
(MOD)

HLS 
(MOD)QUANTITATIVE 

EXAMPLES CLASSIC BNN ENSEMBLE SWAG

IoU 60.79 62.41 62.09 61.35

Brier (Strat.) 0.53 0.47 0.46 0.50

IoU Brier ECE A|C U|I

LoRA-Classic 47.92 0.47 0.13 0.84 0.77

LoRA-SWAG 49.66 0.44 0.10 0.87 0.80

Example Digitanie (train France, test San-Francisco and Buenos Aires) : : : : 

Ground Truth (left) compared to prediction (right) and associated uncertainty estimation from 
a PEFT SWAG-LoRA model (Scale-MAE encoder) . Generally high PE (left) under geographic 
shift combines both types of uncertainty, whereas MI (right) rather captures unusual OOD 
samples, e.g triangle-shaped pool, sandy soccer field & untypical building structures.
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WORK IN PROGRESS

Some beneficial examples where dedicated UE methods helped in slightly improving the 
fine-tuning results under distribution shift. 

The evaluation considers modified datasets that introduce a geographic shift between the 
train & test set, e.g.
Digitanie: 
• Train (France) - Strasbourg,  Arcachon, Biarritz, Montpellier, Toulouse, Paris
• Test – Cairo , San-Francisco, Can-Tho, Buenos Aires 

HLS Burn-Scars (modified): Train (west coast), test (east coast)
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