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• Overview AI-based weather forecasting
• Impact-oriented forecasts/impact models
• Convective environments – a formidable challenge for all models?
• Teaching and training
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Overview AI-based forecasting systems | lead times
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production
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Review_McGovern et al.
MetNet-2
Nowcast net
Leinonenetal
…

AIFS (ECMWF)
Graphcast (Google Deep Mind)
FourCastNet (NVIDIA)
Fuxi (Fudan University)
Pangu (Huawei Cloud)
to come NASA/IBM model
…

Stull Practical Meteorology

S2S

https://journals.ametsoc.org/view/journals/aies/2/3/AIES-D-22-0077.1.xml
https://www.nature.com/articles/s41467-022-32483-x%3C
https://doi.org/10.1038/s41586-023-06184-4
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL101626
https://www.ecmwf.int/en/about/media-centre/aifs-blog
https://www.science.org/doi/10.1126/science.adi2336
https://doi.org/10.1145/3592979.3593412
https://doi.org/10.1038/s41612-023-00512-1
https://doi.org/10.1038/s41586-023-06185-3
https://arxiv.org/abs/2309.10808
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seamless prediction?
flood forecasting 

S2S

seamless prediction?
droughts, energy 
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• Overview AI-based weather forecasting
• Impact-oriented forecasts/impact models
• Convective environments – a formidable challenge for all models?
• Teaching and training
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https://www.nature.com/articles/s41586-024-07145-1
https://www.nature.com/articles/s41586-024-07145-1
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Impact / risk models| the future approach?
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Reichstein et al. preprint

https://assets.researchsquare.com/files/rs-4248340/v1_covered_34e33b6c-e792-4d9d-a78b-cae49d63743b.pdf?c=1714133040
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• Overview AI-based weather forecasting
• Impact-oriented forecasts/impact models
• Convective environments – a formidable challenge for all models?
• Teaching and training
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https://www.insurancejournal.com/news/international/2023/12/07/751177.htm

https://beinsure.com/statistics/worldwide-severe-convective-storm/
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Severe convection| Forecast busts over Europe
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Rodwell et al. 2013 BAMS

• Convection over North America, i.e. an area of
high CAPE is associated with forecast busts
over Europe

• A flow situtation with reduced predictability

• Strong influence of initial condition
uncertainties on the forecast
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Severe convection| Ingredient wind shear

Current AI-based models cannot resolve convection explicitly, we therefore focus on the
ingredients of convective environments.
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Severe convection| Ingredient wind shear
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Wind shear: 
Change of wind (speed and direction) with
height

BOM

Current AI-based models cannot resolve convection explicitly, we therefore focus on the
ingredients of convective environments
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Severe convection| Ingredient stability
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• CAPE = convective available potential 
energy

• A measure for the energy that can fuel
the ascent of an air parcel and hence
severe thunderstorms

• Vertical integral

• CAPE combines information on moisture
and temperature

Stull, Practical Meteorology Thunderstorm Fundamentals
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• Challenging forecast task
• Severe convection requires instability and shear
• Co-location of thermodynamic and dynamic 

accuracy
• Accuracy of vertical profile

• Note: CAPE is derived from pressure levels in 
all models and ERA-5

Taszarek et al., 2017; rawinsonde.com
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Bi et al., 2023; Lam et al., 2023; Bonev et al., 2023; Rasp et al. 2023; Image credit: Louis Poulain-Auzeau

Data Type

Pangu-weather Transformer model

Graphcast Graph neural net

Fourcastnet Spherical fourier 
neural operators

IFS Numerical weather 
prediction model

ERA-5 Reanalysis
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• Convective outbreak at leading edge of a trough
• Warnings issued 4 days prior by Storm Prediction Center 
• 141 tornadoes in 10 states, 38 fatalities

Storm Prediction Center, 2020

Case study| Tornado outbreak April 12/13 2020
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CAPE @ 6 UTC 13 April 2020 | 42 hours lead-time 

Image credit: Monika Feldmann
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CAPE @ 6 UTC 13 April 2020 | 42 hours lead-time 

The presence of high CAPE air is captured by all models, differences in the structure

Image credit: Monika Feldmann
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Image credit: Monika Feldmann

CAPE @ 6 UTC 13 April 2020 | 174 hours lead-time 

The presence of high CAPE air is captured by all models, differences in the structure
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Graphcast – ERA5

IFS – ERA5

Pangu-weather – ERA5

ERA-5
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CAPE @ 6 UTC 13 April 2020 | 174 hours lead-time 

Image credit: Monika Feldmann

300 J/kg
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Object-based forecast verfication| SAL and FSS 
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SAL = Structure (S) Amplitude (A) Location (L)
FSS = Fractions skill score
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best forecast if S,A,L = 0

Wernli et al. 2008 

Forecast F
Observation O
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best forecast if S,A,L = 0

Wernli et al. 2008 

Forecast F
Observation O
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Fourcastnet
IFS

Object-based forecast verfication| SAL CAPE >300J/kg 

Image credit: Monika Feldmann

8 time steps for verification  colored band

STRUCTURE AMPLITUDE LOCATION
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Graphcast-oper
Pangu
Pangu-oper
IFS

Seasonal performance | CAPE fractions skill-score  

FSS CAPE > 300 J/kg FSS CAPE > 1000 J/kg

• Domain USA, March-September 2020
• All models have comparable scores for lead times up to 240 hours

be
st

 

Image credit: Monika Feldmann



ESA-ECMWF WORKSHOP 2024 - Machine Learning for Earth System Observation and Prediction Graphcast
Graphcast-oper
Pangu
Pangu-oper
IFS

Seasonal performance | CAPE X shear

FSS CAPE x shear  > 300 m2/s2 FSS CAPE x shear  > 500 m2/s2

Image credit: Monika Feldmann
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• Recent event: 2-3 April 2024, tornado 
outbreak USA

ECMWF AIFS Blog, 2024; Chen et al., 2023

Data Type

AIFS Graph neural net

FuXi Transformer 
cascade

Pangu-
weather Transformer model

Graphcast Graph neural net

Fourcastnet Spherical fourier 
neural operators

IFS Numerical weather 
prediction model

SAL score CAPE >300 J kg-1

Adding more models | ECMWF operational implementation

Image credit: Monika Feldmann
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• CAPE derived from T and Q
• Nonlinear conversion of RH(T,p) to Q
• Sensitive to errors in RH, T and p
• Skill of Q derived from RH worse than 

direct prediction

Data Type Moisture

AIFS Graph neural net Q

Pangu-
weather

Transformer 
model Q

Graphcast Graph neural net Q

Fourcastnet Spherical fourier 
neural operators RH

FuXi Transformer 
cascade RH

The role of moisture| Q vs. RH 
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• AI models capable of producing realistic CAPE 
values

• Co-location of high CAPE and shear
• Nonlinear combination of CAPE and shear

• Models with Q appear to perform better than 
models with RH

• Models with Q can outperform IFS

Next steps
• Expansion to other convective hotspots
• Need for more reference data in all models → 

hindcast archive

Conclusion convective env. evaluation



ESA-ECMWF WORKSHOP 2024 - Machine Learning for Earth System Observation and Prediction

• How can the next generation of meteorology students be trained 
best?

• Process understanding vs. AI knowledge?

• How to ensure training and access outside of Europe?  





• AI models capable of producing realistic CAPE values
− Co-location of high CAPE and shear
− Nonlinear combination of CAPE and shear

• Models in group 1 appear to perform better than group 2
• Models in group 1 partially outperform IFS

Next steps
• Case studies in other convective hotspots
• Regional seasonal analyses of 2020

Perspective: evaluation of extreme events​
• Need for more reference data in all models → hindcast archive

Conclusion and Outlook
Data Type Differences

AIFS Graph neural 
net Q

Pangu-
weather

Transformer 
model 3D cube, Q

Graphcast Graph neural 
net 3D cube, Q

Fourcastnet
Spherical 
fourier neural 
operators

2D 
channels, 
RH

FuXi Transformer 
cascade

2D 
channels, 
RH



• Images: 2020 Easter tornado outbreak – Wikipedia; last accessed 11-04-2024
• ajg.com/gallagherre/-/media/files/gallagher/gallagherre/news-and-insights/2024/january/natural-catastrophe-and-climate-report-2023.pdf; last accessed 11-04-2024
• thundeR - ERA5 sigma levels browser (rawinsonde.com) ; last accessed 11-04-2024
• Taszarek, M., H. E. Brooks, and B. Czernecki, 2017: Sounding-Derived Parameters Associated with Convective Hazards in Europe. Mon. Wea. Rev., 145, 1511–1528, https://doi.org/10.1175/MWR-D-16-

0384.1.
• Remi Lam et al. ,Learning skillful medium-range global weather forecasting. Science382, 1416-1421(2023). DOI:10.1126/science.adi2336
• Bi, K., Xie, L., Zhang, H. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023). https://doi.org/10.1038/s41586-023-06185-3
• Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M., Kashinath, K. &amp; Anandkumar, A.. (2023). Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere. Proceedings of the 40th 

International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:2806-2823 Available from https://proceedings.mlr.press/v202/bonev23a.html.
• Rasp, S., “WeatherBench 2: A benchmark for the next generation of data-driven global weather models”, arXiv e-prints, 2023. doi:10.48550/arXiv.2308.15560.
• Easter 2020 Tornado Information (weather.gov) , last accessed 12-04-2024
• Previous SPC Convective Outlooks Issued on : (noaa.gov) , last accessed 12-04-2024
• Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., and Foresti, L.: Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0), Geosci. 

Model Dev., 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019, 2019.
• Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts. Mon. Wea. Rev., 136, 4470–4487, 

https://doi.org/10.1175/2008MWR2415.1.
• AIFS Blog: First update to the AIFS | ECMWF, last accessed 12-04-2024
• Chen, L., Zhong, X., Zhang, F. et al. FuXi: a cascade machine learning forecasting system for 15-day global weather forecast. npj Clim Atmos Sci 6, 190 (2023). https://doi.org/10.1038/s41612-023-

00512-1
• Tom Beucler et al. ,Climate-invariant machine learning.Sci. Adv.10, eadj7250(2024). DOI:10.1126/sciadv.adj7250

Sources

https://en.wikipedia.org/wiki/2020_Easter_tornado_outbreak#:%7E:text=A%20widespread%20and%20deadly%20tornado,Service%20in%20Charleston%2C%20South%20Carolina.
https://www.ajg.com/gallagherre/-/media/files/gallagher/gallagherre/news-and-insights/2024/january/natural-catastrophe-and-climate-report-2023.pdf
http://rawinsonde.com/ERA5_USA/
https://doi.org/10.1038/s41586-023-06185-3
https://www.weather.gov/jan/easter2020tornadoes
https://www.spc.noaa.gov/cgi-bin-spc/getacrange.pl?date0=20200411&date1=20200413
https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/first-update-aifs
https://doi.org/10.1038/s41612-023-00512-1
https://doi.org/10.1038/s41612-023-00512-1


• Reduced number of 
vertical levels impacts 
CAPE computation

• Overestimation of low 
values

• Underestimation of 
extremes

• Comparison with 
observed soundings 
shows 
underestimation by 
reanalysis

Observations vs. reanalysis



CAPE scores 2- 3 April 2024?   

Image credit: Monika Feldmann



CAPE SAL



Case T&Q



Wish list| Access to more cases
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• Results are highly preliminary because they are based only on two cases need for more cases

• Ideal world: Forecasts started from operational analyses with all AI models for the period starting
in 2020



Impact / risk models| the classical approach
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