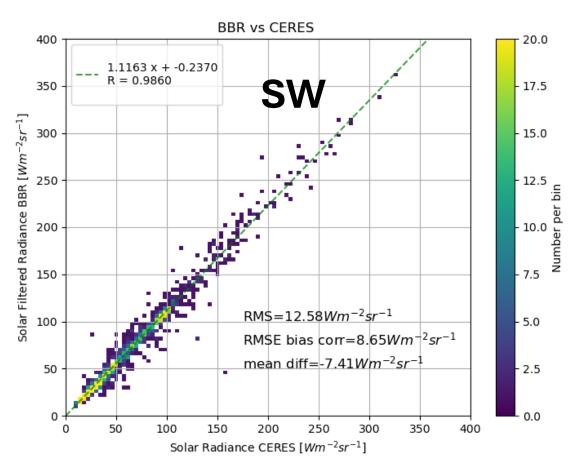

BBR Level-1 product comparison with CERES

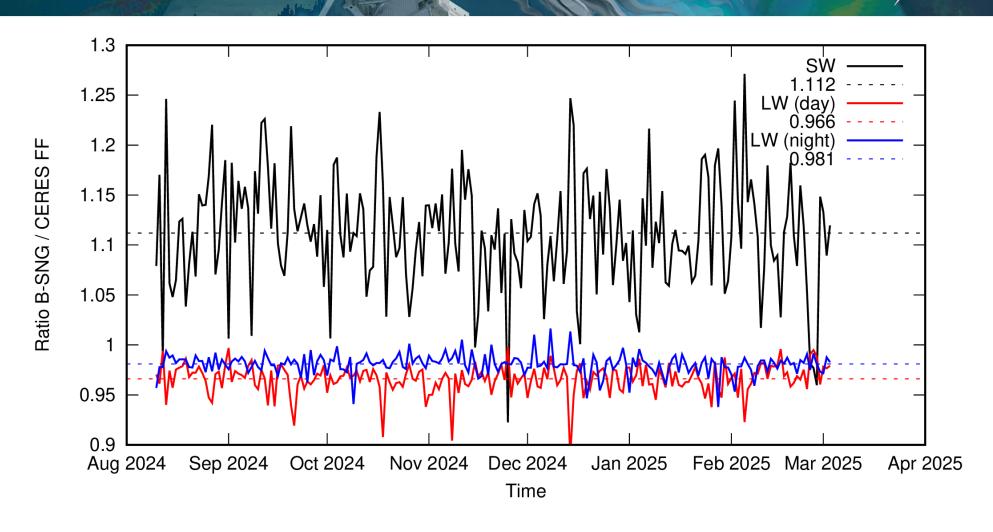
Nicolas Clerbaux, Almudena Velazquez, Edward Baudrez, Christine Aebi Royal Meteorological Institute of Belgium (RMIB)

BBR-SNG Comparison with CERES FLASHflux - method



- CERES: Cloud and Earth Radiant Energy System
- Level 2 SSF (Single Scanner Footprint) product
- Currently only FLASHFlux (Fast Longwave And SHortwave Flux) products available from across-track instruments on:
 - FM1 on Terra (descending 10:30 morning drifting)
 - FM6 on NOAA20 (ascending 13:25 afternoon)
- CERES PSF of ~20 km (Terra, Aqua) or ~ 24 km (SNPP, NOAA20) -> larger than the BBR swath (~18km)
- B-SNG integration area: 30 (across track) x 21 (along-track)
- Collocation criteria
 - Time difference < 300 seconds
 - distance between PSF centers < 3km
 - Angle between viewing directions < 3°
- Dates: 10 Aug. 2024 03 March 2025

B-SNG Comparison with CERES FLASHflux - Results


BBR vs CERES 20.0 1.0104 x + -3.1988 R = 0.9913 140 LW - 17.5 120 Thermal Filtered Radiance BBR [*Wm*^{–2}*sr* - 15.0 - 12.5 - 10.0 $RMS = 3.54Wm^{-2}sr^{-1}$ - 5.0 RMSE bias corr=2.59Wm⁻²sr⁻¹ - 2.5 mean diff= $2.41Wm^{-2}sr^{-1}$ 20 120 140 60 80 100 Thermal Radiance CERES [Wm⁻²sr⁻¹]

SW brighter ~9%

LW lower $\sim 3\%$ ($\sim 2.4 \text{ W/m}^2/\text{sr}$)

Temporal Stability - BBR versus FM6/NOAA20

→ No indication of temporal degradation so far.

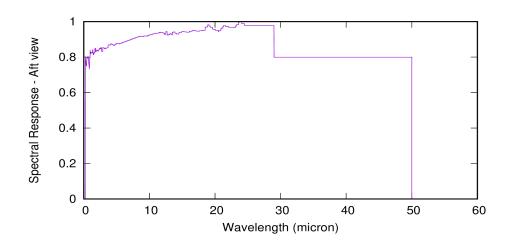
Shortwave ground calibration revisit

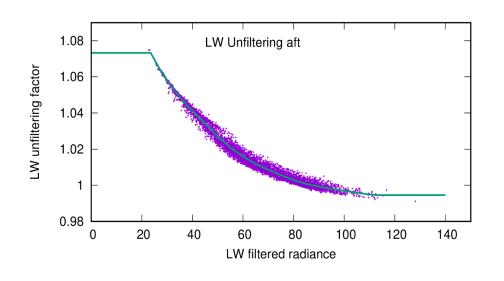
- SW ground calibration done using a reference laser source at λ =0.532 μ m
- Need to convert gain G_{laser} to G_{SW}= C * G_{laser}

 $\int r_{SW}(\lambda) L_{Planck} (\lambda, 5800) d\lambda$

- A value of C=0.9278 seems to have been used in the CCDB instead of C~1.0 obtained with latest spectral response.
- Using C=1 will reduce the SW radiances and flux by ~7.2%
 - → Better agreement with CERES

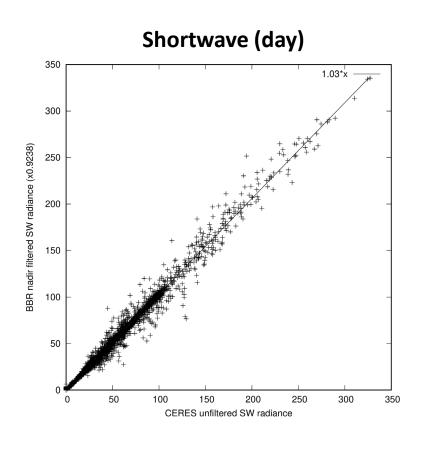
Figure 6-7: Gain of each pixel at the wavelength of the laser source, and averaged for all TestIDs


Longwave calibration revisit



- The LW calibration uses a CCDB table between filtered radiances and blackbody temperature
- To construct this table there was no interpolation of spectral response, and no sensitivity in the far IR (λ >50 μ m)
- This assumption necessitates higher unfiltering factor, especially for cold scene (up to 7%-8% unfiltering correction)

Propose to rebuild the CCDB table with interpolation and extrapolation up to λ =500 μ m


→ Better agreement with CERES (lower difference and scene type dependency)

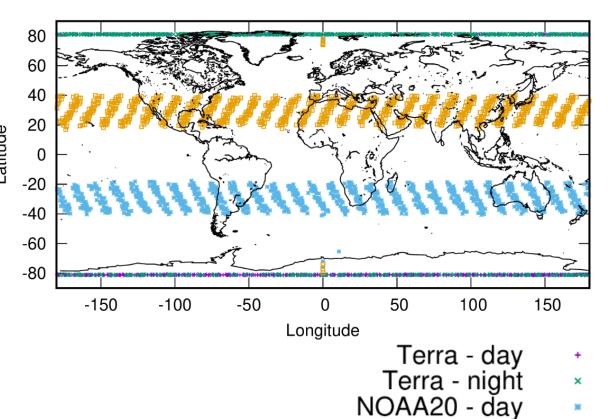
Shortwave and Longwave calibration revisit

Longwave (day) 120 CERES unfiltered LW radiance 20 20 60 120 BBR nadir unfiltered LW radiance

best fits day: $L_{BBR} = 1.03 L_{CERES}$

best fits day: $L_{BBR} = 0.984 L_{CERES}$

best fit night: $L_{BBR} = 0.985 L_{CERES}$


→ Target to have the CCDB update ready for end of March.

Summary – comparison with CERES

NOAA20 - night

- CERES is the best BB measurements available for BBR validation (GERB also used but less reliable).
- Simultaneous Nadir Overpasses (SNO) with NOAA2 for each orbit crossing.
- Significant biases with respect to CERES FLASHflux the current L1 baseline (AD).
- Will be reduced by CCDB updates. Expected improvements:
 - BBR SW ~9% -> ~2% brighter
 - BBR LW ~3% -> ~1.5% lower

