

Evaluation of Aeolus L2B wind product using triple collocation analysis

DTU

Maichen Zuo¹, Charlotte Bay Hasager¹, Ioanna Karagali²

¹ Technical University of Denmark; ² Danish Meteorological Institute

3rd Aeolus NWP/Inspact and L2B product quality working meeting, Webex, 1 December 2021

ESA UNCLASSIFIED – For ESA Official øse On

Objectives of the L2B product quality assessment

To evaluate Level 2B11 winds over Australia using triple collocation analysis

Val/Cal studies for Southern Hemisphere is limited.

© VirES

- Boundary Layer Profilers: 100 m/250 m
- 30-minute averaged winds

3

Study period: October 2020 – March 2021 (Summer half year of Australia)

- Collocation criteria
 - WPR: < 75 km
 - ERA5: nearest grid
 - Temporal difference < 30 min
- Quality control
 - Rayleigh-clear winds: estimated error < 7 m/s 30%
 - Mie-cloudy winds: estimated error < 5 m/s

(Guo et al., 2021; Zhang et al., 2016)

━ ■ ▶ ♣ ━ ≌ ■ ■ ≝ ━ ■ ■ ■ = = ∺ ■ ● ■ + ■ + ■ * ■ *

• Wind vectors from WPR and ERA5 were converted to

 $HLOS = -\mathbf{u} \cdot \sin \varphi - v \cdot \cos \varphi$

Azimuth angle (~100°/259° for descending/ascending)

• Conversion: WPR, ERA5 -> Aeolus range bins

Model of Triple Collocation

Three different measurement systems:

$$HLOS_1 = T + e_1$$

$$HLOS_2 = a_2 + b_2T + e_2$$

$$HLOS_3 = a_3 + b_3T + e_3$$

Where:

- T the true value;
- a_i -offset of the calibration;
- b_i slope of the calibration;
- e_i the random error of each system;
- $HLOS_i$ horizontal line-of-sight wind speed.

Assume $HLOS_1$ is the reference.

After derivation, the error variances are:

$$\begin{split} \sigma_{1}^{2} &= \left\langle e_{1}^{2} \right\rangle = C_{11} - \frac{(C_{12} - \langle e_{1}e_{2} \rangle)(C_{13} - \langle e_{1}e_{3} \rangle)}{C_{23} - \langle e_{2}e_{3} \rangle} \\ \sigma_{2}^{2} &= \left\langle e_{2}^{2} \right\rangle = C_{22} - \frac{(C_{12} - \langle e_{1}e_{2} \rangle)(C_{23} - \langle e_{2}e_{3} \rangle)}{C_{13} - \langle e_{1}e_{3} \rangle} \\ \sigma_{3}^{2} &= \left\langle e_{3}^{2} \right\rangle = C_{33} - \frac{(C_{23} - \langle e_{2}e_{3} \rangle)(C_{13} - \langle e_{1}e_{3} \rangle)}{C_{12} - \langle e_{1}e_{2} \rangle} \end{split}$$

Where:

- C_{ii} the variance of each system
- C_{ij} the covariance between the system i and j;
- () the statistical averaging.

Assume the true measurement errors are independent, then $\langle e_i e_j \rangle = 0$.

• esa

Algorithm of Triple Collocation

The error standard deviation:

$$\sigma_{1} = \sqrt{C_{11} - \frac{C_{12} C_{13}}{C_{23}}}$$
$$\sigma_{2} = \sqrt{C_{22} - \frac{C_{12} C_{23}}{C_{13}}}$$
$$\sigma_{3} = \sqrt{C_{33} - \frac{C_{23} C_{13}}{C_{12}}}$$

Calibration coefficients and relations (assume $HLOS_1$ -WPR is the reference):

 $b_{2} = \frac{C_{23}}{C_{13}}$ $b_{3} = \frac{C_{23}}{C_{12}}$ $a_{2} = \langle HLOS_{2} \rangle - b_{2} \langle HLOS_{1} \rangle$ $a_{3} = \langle HLOS_{3} \rangle - b_{3} \langle HLOS_{1} \rangle$

$$HLOS_2^* = \frac{HLOS_2}{b_2} - \frac{a_2}{b_2}$$
$$HLOS_3^* = \frac{HLOS_3}{b_3} - \frac{a_3}{b_3}$$

(Vogelzang and Stoffelen, 2012; Ribal and Young, 2020)

Standard deviation error (SDE) of three different systems [ms⁻¹]

	1: WPR	2: Aeolus	3: ERA5	Ν
Rayleigh-clear	1.79	5.43	0.95	883
Mie-cloudy	2.11	4.42	1.52	226

- ERA5 is the most precise wind product, followed by ground-based radar and Aeolus product;
- Mie channel has better performance than Rayleigh channel;
- The SDE of both Rayleigh-clear and Mie-cloudy winds are large than Aeolus Mission Requirements.

If considering spatial representation error:

	1: WPR	2: Aeolus	3: ERA5	Ν
Rayleigh-clear	1.79	5.43	0.95	883
Mie-cloudy	2.11 î	4.42 î	1.52 🤑	226

WPR, Rayleigh-clear winds and ERA5:

- The effective horizontal resolution of ERA5 is about 150 km (Stoffelen et al., 2020);
- Small common variance of the coarse Rayleigh winds and WPR;
- Small impact from representativeness error.

WPR, Mie-cloudy winds and ERA5:

- Common variance between the moderate-resolution Mie winds and WPR is not resolved by ERA5;
- SDEs of ground-based radar and Mie-cloudy winds should become larger;
- The higher value of SDEs may be caused by relatively high variability conditions of Mie-cloudy winds.

Main results from L2B product quality analysis

Comparison with intercomparison analysis

늘 🔜 👰 🚺 🔜 🛨 🧩 📥 🔚 🖊 🔶

• Summary:

- Overall, both Rayleigh-clear winds and Mie-cloudy winds are with sufficient accuracy of systematic error < 0.6 m/s;
- Mie-cloudy winds are shown to be more precise than Rayleigh-clear winds;
- The results from triple collocation and intercomparison analysis are comparable.

• Future work:

- Investigate the wind variability during Rayleigh and Mie winds sampling;
- Assess data quality for Australia winter (April 2020 September 2020)

Thank You! Any Questions?

DTU

Acknowledgements. The project LIKE (Lidar Knowledge Europe) H2020-MSCA-ITN-2019, Grant number 858358 is funded by the European Union. Our appreciation also goes to Ad Stoffelen and Gert-Jan Marseille for the fruitful discussion to interpret the results.

