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Motivation: Challenges in Remote Sensing and the Role of
Synthetic Data
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Generative Model

Proposed Workflow: Synthetic Data for Remote Sensing
Segmentation
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Train segmentation
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g’- ESA WorldCover 2.0

Type: Global Land Cover classification
map
Resolution: 10m GSD
Year: 2021 release
Classes: 11 land cover classes
Subset Used:
o Extracted New Yorkregion
Tiled to: 512x512 pixels
Usage
o Train generative modelto generate
land covers
o Train conditional generative models
to generate optical images
conditioned on land covers

Data'sets’

A

g
-~ NAIP (New York subset)

*Type: Aerial imagery
*Resolution: 1 meter GSD
* Used Bands: RGB
*Acquisition: 2021-2022
*Subset Used:
oNew York State region
*Number of images used: 126,000 tiles
*Tile to: 512x512 pixels
» Usage
o Train conditional generative models
to generate optical images
conditioned on land covers



Two types of generation pipelines
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Unconditional Generation -
Land Cover Maps

Model: Latent Diffusion
Objective: Generate
semantic land cover maps
Loss Function: Cross-
Entropy

Generative Architectures

Conditional Generation -
Guided Image Synthesis
* Architectures:
o) SPADE
0 ControlNet
 Objectives: Generate
realistic, high resolution

on landcover

~

optical images conditioned




Unconditional Image Generation — Land Cover

Real Land Cover Synthetic Land Cover
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Conditional Image Generation — Spade & ControlNet

ControlNet Conditional Generation
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Segmentation Architectures

* Architectures: UNet, UNet++, and DeepLabV3+
 Dataset
o 4 setswere used
= Realrgbreallc: Real optical images with real land covers
= Fakergbreallc: conditionally generated optical images with real land cover used as
conditional input to the trained controlNet
= Fakergbreallcspade: conditionally generated optical images with real land cover used
as input to the trained SPADE network
= Fakergbfakelc: conditionally generated optical images with synthetically generated
land covers used as input to the trained controlNet
o 8,000 images for training
o 2,000 images for testing
* Evaluation Metric: Intersection over Union (loU)
* Alltrained segmentation models were cross tested with each other



Training datasets
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Segmentation Architecture
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Segmentation Results
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Key Insights

Real-to-Fake Generalization: Models trained on real data generalize well to synthetic data

Fake-to-Real Generalization: training on the synthetic optical images conditioned on either real of
synthetic land covers generalize well on real data which is useful in the data scarce domains

Overfitting: segmentation models trained on data generated using the SPADE architecture
overfitted to the data generated by SPADE and did not generalize well to the other datasets



Conclusion & Future Direction

Conclusion: What Did We Aim to Learn?

* Objective: Investigate whether synthetic data can effectively support training of downstream tasks like
segmentation.

* Key Insight: Synthetic data can generalize well and in some cases replace or supplement real data.

Future Directions

 Data Mixing Experiments: Explore combinations of real and synthetic data during training to study
performance trade-offs and benefits.

* Fine-tuning Scenarios: fine-tuning of the generative model for target-specific domains.

* Scaling Up Generation: Train models on broader geographies and modalities to increase realism and
diversity of generated datasets.



THANK YOU!

Q&A

Lydia Abady | Another Earth | lydia@anotherearth.ai
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