ANOTHER EARTH

Synthetic Geospatial Data for Training AI-enabled Downstream Tasks

Maya Pindeus Co-Founder, CEO

Felix Geremus Co-Founder, CTO

Lydia Abady Lead Al Researcher

International workshop on AI Foundation Model for EO 5-7 May 2025 | ESA ESRIN - Frascati, Italy

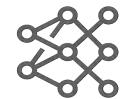
Motivation: Challenges in Remote Sensing and the Role of Synthetic Data

Data Scarcity and High Annotation Costs

- Labeled remote sensing data is limited and expensive.
- This restricts the amount of training data and affects model accuracy.

Domain Variability and Limited Ground Truth

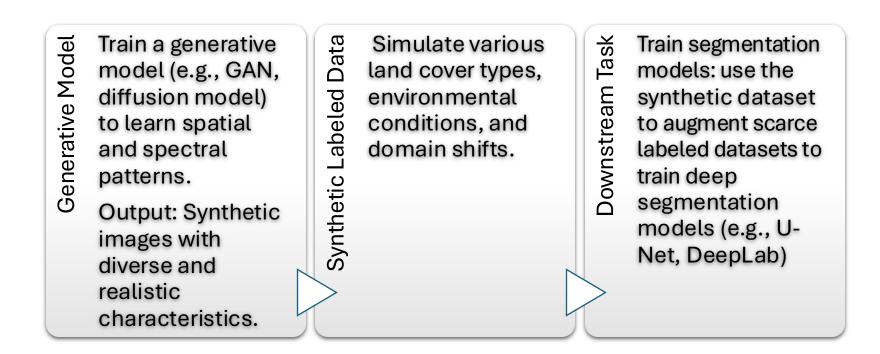
- Environmental heterogeneity leads to domain shifts.
- Sparse ground truth hampers generalization across regions.



Synthetic Data Generation

- Provides scalable, labeled samples.
- Helps address data scarcity.
- Improves performance in tasks like segmentation.

Proposed Workflow: Synthetic Data for Remote Sensing Segmentation



Datasets

ESA WorldCover 2.0

- Type: Global Land Cover classification
 map
- Resolution: 10m GSD
- Year: 2021 release
- Classes: 11 land cover classes
- Subset Used:
 - Extracted New York region
- **Tiled to**: 512×512 pixels
- Usage
 - Train generative model to generate land covers
 - Train conditional generative models to generate optical images conditioned on land covers

NAIP (New York subset)

- •Type: Aerial imagery •Resolution: 1 meter GSD • Used Bands: RGB •Acquisition: 2021–2022 •Subset Used: •New York State region
- •Number of images used: 126,000 tiles •Tile to: 512×512 pixels
- Usage
 - Train conditional generative models to generate optical images conditioned on land covers

Generative Architectures

Two types of generation pipelines

Unconditional Generation – Land Cover Maps

- Model: Latent Diffusion
- **Objective:** Generate semantic land cover maps
- Loss Function: Cross-Entropy

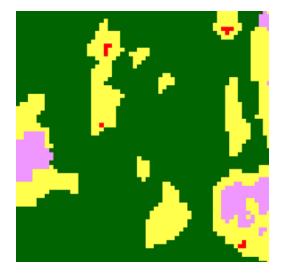
Conditional Generation – Guided Image Synthesis

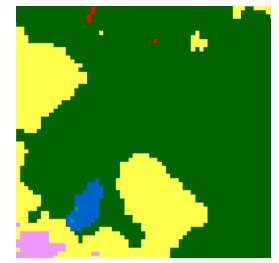
- Architectures:
 - o SPADE
 - o ControlNet
- **Objectives**: Generate realistic, high resolution optical images conditioned on landcover

Unconditional Image Generation – Land Cover

Real Land Cover

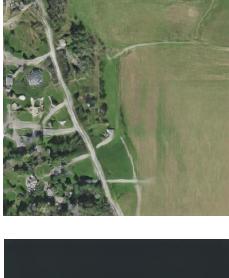
Synthetic Land Cover





SPADE Conditional Generation

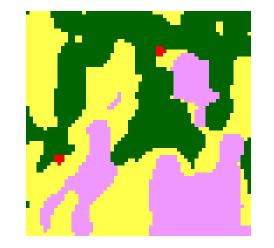
Input

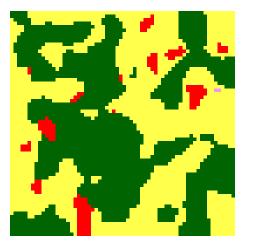


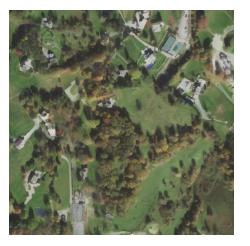
Output

Conditional Image Generation – Spade & ControlNet

ControlNet Conditional Generation







Input

Output

Segmentation Architectures

- Architectures: UNet, UNet++, and DeepLabV3+
- Dataset
 - \circ 4 sets were used
 - **Realrgbreallc**: Real optical images with real land covers
 - Fakergbreallc: conditionally generated optical images with real land cover used as conditional input to the trained controlNet
 - Fakergbreallcspade: conditionally generated optical images with real land cover used as input to the trained SPADE network
 - Fakergbfakelc: conditionally generated optical images with synthetically generated land covers used as input to the trained controlNet
 - \circ 8,000 images for training
 - $\,\circ\,$ 2,000 images for testing
- Evaluation Metric: Intersection over Union (IoU)
- All trained segmentation models were cross tested with each other

Segmentation Results

		Test Dataset			
Training data sets	Segmentation Architecture	realrgbreallc	fakergbreallc	fakergbreallcspade	fakergbfakelc
realrgbreallc	Unet	0.76	0.73	0.73	0.73
	Unet++	0.75	0.73	0.73	0.73
	Deeplabv3+	0.74	0.73	0.74	0.73
fakergbreallc	Unet	0.7	0.79	0.7	0.69
	Unet++	0.7	0.79	0.7	0.67
	Deeplabv3+	0.69	0.79	0.67	0.67
fakergbreallcspade	Unet	0.46	0.43	0.94	0.3
	Unet++	0.47	0.41	0.95	0.27
	Deeplabv3+	0.46	0.4	0.92	0.27
fakergbfakelc	Unet	0.72	0.7	0.73	0.76
	Unet++	0.71	0.68	0.73	0.77
	Deeplabv3+	0.71	0.68	0.73	0.77

- Real-to-Fake Generalization: Models trained on real data generalize well to synthetic data
- Fake-to-Real Generalization: training on the synthetic optical images conditioned on either real of synthetic land covers generalize well on real data which is useful in the data scarce domains
- **Overfitting:** segmentation models trained on data generated using the SPADE architecture overfitted to the data generated by SPADE and did not generalize well to the other datasets

Conclusion: What Did We Aim to Learn?

- **Objective**: Investigate whether **synthetic data** can effectively support training of **downstream tasks** like segmentation.
- Key Insight: Synthetic data can generalize well and in some cases replace or supplement real data.

Future Directions

- **Data Mixing Experiments**: Explore **combinations of real and synthetic data** during training to study performance trade-offs and benefits.
- Fine-tuning Scenarios: fine-tuning of the generative model for target-specific domains.
- Scaling Up Generation: Train models on broader geographies and modalities to increase realism and diversity of generated datasets.

THANK YOU!

Q&A

Lydia Abady | Another Earth | lydia@anotherearth.ai