011

P2RX7 GENE VARIANTS ASSOCIATE WITH ALTERED INFLAMMASOME ASSEMBLY AND REDUCED PYROPTOSIS IN CHRONIC NONBACTERIAL OSTEOMYELITIS (CNO)

A. Charras^{1,*}, S. R. Hofmann², A. J. Cox³, F. Schulze², S. Russ², S. Northey¹, X. Liu⁴, Y. Fang⁴, S. Haldenby⁴, H. Hartmann⁵, A. G. Bassuk⁶, A. Carvalho¹, F. Sposito¹, L. Grinstein⁷, A. Rösen-Wolff², A. Meyer-Bahlburg⁸, M. W. Beresford^{1,9}, E. Lainka¹⁰ on behalf of the German Autoinflammatory Disease Network (AID Net), D. Foell¹¹ on behalf of the German Autoinflammatory Disease Network (AID Net), H. Girschick¹¹ on behalf of the German Autoinflammatory Disease Network (AID Net), H. Girschick¹¹ on behalf of the German Autoinflammatory Disease Network (AID Net), H. Girschick¹¹ on behalf of the German Autoinflammatory Disease Network (AID Net), H. Morbach¹², S. Uebe¹³, U. Hüffmeier¹³, P. J. Ferguson⁶, C. M. Hedrich ^{1,9}

¹Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom, ²Department of Paediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, ³Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, ⁴Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom, ⁵Light Microscopy Facility, Centre for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany, ⁶Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, United States, ⁷Department of Pediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, ⁸Pediatric Rheumatology and Immunology, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany, ⁹ Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom, ¹⁰Department of Paediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, ¹¹Department for Pediatric Rheumatology & Immunology, University Hospital Münster, Münster, ¹²Department of Pediatrics, Vivantes Hospital Friedrichshain, Berlin, ¹³Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Introduction: Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease primarily affecting children and adolescents. It can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. The exact pathophysiology remains unknown, and no disease-specific biomarkers exist.

Objectives: This study aimed to investigate CNO-associated variants in *P2RX7*, encoding the ATP-dependent transmembrane K⁺ channel *P2RX7*, and their effects on NLRP3 inflammasome assembly, to explore potential for patient stratification and individualized care.

Methods: Whole exome sequencing in two CNO patients from the same family (mother and daughter), and target sequencing of *P2RX7* in a large CNO cohort (N=190) were conducted. Results were compared with publicly available datasets and regional controls (N=1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release.

Results: Rare damaging mutations in *P2RX7* were identified in two related CNO patients. Targeted *P2RX7* sequencing identified 11 additional CNO patients with rare damaging variants. Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (up to 11 CNO patients) participants were over-represented when compared to 190 randomly selected healthy controls. Patients with rare damaging variants were younger and more frequently required treatment with 2^{nd} -line agents (DMARDs and/or bisphosphonates). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages expressing variant P2X7 exhibited altered potassium flux, inflammasome assembly, IL-1 β and IL-18 release, and pyroptosis.

Conclusion: Rare damaging *P2RX7* variants occur in a small subset of the here investigated CNO patients ($5\cdot7\%$). The genetically variable *P2RX7* gene may represent a CNO risk allele. Observations argue for inhibition of inflammasome activation and/or cytokine blocking strategies and may allow future patient stratification and individualized care. **Patient Consent:** Yes, I received consent

Patient Consent: Yes, I received consen

Disclosure of Interest: None declared