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Formulation of the problem and proposed solution
Results!
Examples:

Data validation
SDC
ML classifier (for Census and surveys) 
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Formulation of the problem

Using advanced, up-to-date statistical methods to:
Validate input data
Produce high quality statistics/analysis
Ensure statistical disclosure control (SDC)

While:
Evaluating the performance of these methods
Reporting the uncertainty, biases, failures
Providing interpretability of results

And preserving transparency (open-source code)
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Solution

Standard mathematical statistics methodology, 
applied & addapted to advanced tools/methods/algorithms!

Celebrated examples:
machine learning
deep learning
Bayesian modelling
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Solution continued
Standard steps:

• explore
• train
• evaluate and optimise according to goals
• quantify and report the uncertainty (due to data variability, model

complexity/fit, distributional differences between train/test data
measurement, data-model uncertainty interaction)

• describe/interpret the results in simpler terms (surrogate models, feature 
importance, conditional posterior distributions checks)
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Results
Illustration of solution
1. Data validation
2. SDC
3. ML classifier

with Bayesian modelling, deep learning and ML &
uncertainty+performance reporting
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Data validation
Classical approach –
advantages and implementation
(multi-step)

R-

https://github.com/orgs/data-
cleaning/repositories

New methods – motivation and
implementation

• rule discovery: R-

• simultaneous, Bayesian, edit and
imputation for continuous and
categorical microdata
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Data validation continued

Classical methods

Main steps
Data and rules confrontation
Error location
Imputations

Reference

Statistics Netherlands: theory and R-packages
(validate, errorlocate, simputation, validatesuggest)

New methods & uncertainty

ML (e.g. apriori, eclat algorithms) for rule discovery for 
confrontation step, plus error location and imputations

Bayesian hierarchical models:

(i) a Dirichlet process mixture of multinomial distributions 
(if categorical) or flexible joint probability (if 
continuous)  as the model for the underlying true 
values of the data, with support restricted to the set of 
theoretically possible combinations, 

(ii) a model for latent indicators of the values that are in 
error, and 

(iii) a model for the reported responses for values in error.

https://www.tandfonline.com/doi/abs/10.1080/01621459.2015.
1040881

https://dmanriqu.pages.iu.edu/preprints/LCM_Zeros_EdImp.pdf
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SDC
Evaluation of classical methods:

• Risk:
identification
attribute disclosure
differencing

• Methods
(non-/perturbative, variants, 
critical parameters)

• Residual risk & Information loss

Additional problems/issues –
examples (grid cell swapping) 

• https://github.com/sdcTools
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SDC continued
New methods/ideas - under evaluation:

• using Bayesian modelling for generating synthetic data

• Bayesian framework - most suitable reasoning:
calculate predictive probabilities and disclosure risk (of original, protected, synthetic data)
under model uncertainty (with e.g. model averaging) while using joint data distributions

• using deep-learning and/or cryptography inspired methods such as adversarial neural networks 

• using differential privacy and its Bayesian variant which can guard against difficult scenarios built on 
deep learning

“You will not be affected, adversely or otherwise, by allowing your data to be used in any study or 
analysis, no matter what other studies, data sets, or information sources, are available”
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ML classifier – multiple algorithms

Completed:

• EDA, train/test/cross-validate, optimise
• performance evaluation (multiple metrics)
• reporting uncertainty (of results and of performance metrics) 
• interpretability tools

https://github.com/violetacln/SLOPA and

Calian, V., Harðarsson, Ó. and Zuppardo, M. (2023) Machine learning estimation of the resident population. Statistical Journal of the IAOS, 
vol. 39, no. 4, pp. 947-960. https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji230090
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ML classifier – example, performance metrics distributions
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ML classifier – example (for Census and surveys)

Performance metrics: confidence bands 
and threshold choices
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Confidence bands of RF performance metrics
Effect of data variability on predicted
outcome for a decision tree



ML classifier – example, feature importance
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Thank you!
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