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Abstract

The  credibility  of  the  figures  produced  by  INSEE  is  often  questioned  in  the  Overseas
Departments. Population census figures, in particular, are heavily criticized by local elected
officials in Guyana and Mayotte, prompting INSEE to work on innovative data sources to
support  its  statistical  production.  The  use  of  satellite  imagery  allows,  on  one  hand,  to
complement  the  estimates  produced  by  INSEE  by  aligning  the  observed  evolution  of
buildings on the images with the population estimates produced by the population census.
On the other hand, it supports the operation of locating housing on the ground by anticipating
in advance, through the images, the areas where creation or destruction movements are
most significant.

Deep Learning algorithms trained on these images are able to automatically detect building
outlines  in  the  Overseas  Departments  very  accurately.  The  algorithm  showing  the  best
performance has been wrapped into a web application for office agents, allowing them to
make decisions based on the areas displayed by the algorithm and the raw satellite images.
The entire processing chain, from image retrieval to the decision support web application,
including the training of Deep Learning algorithms, requires a variety of skills and a high level
of technical expertise to be maintained.
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1. Introduction 

In  French  Guiana  and  Mayotte,  the  figures  from the  population  census  (RP)  are  often

questioned by politicians and the population. Therefore, confirming the observed changes by

INSEE through external sources is crucial. This paper aims to present the work carried out at

INSEE within the "satellite data" project and to explain the potential  contribution of earth

observation data.  The project  involves using satellite  images to identify,  through artificial

intelligence, the location of housing units. This is done to more precisely direct the human

resources  deployed  for  cartographic  surveys  and  to  support  the  estimates  produced  by

INSEE's official population census operation.



This project mobilizes diverse skills, and its complexity requires a general understanding of

different subjects: satellite image manipulation, understanding the structure of an image from

a  computer  science  perspective,  mastery  of  deep  learning  tools  and  algorithm  training

methods, documentation on the progress of artificial intelligence research, processing skills,

and making results available via an application. We will therefore attempt to address and

detail all aspects of this project. Initially, we will recall the context of establishing this working

group around satellite data, precisely outlining the needs it aims to address. Secondly, we

will  delve  into  the  available  data,  satellite  images,  and  their  preprocessing  before  any

analysis. We will then recall the principle of deep learning segmentation algorithms, justifying

both their  relevance in this specific  context  and presenting how we applied them to this

problem and these data. This will allow us to detail the training of the algorithms and present

the results obtained. Since these results are not immediately exploitable, we will present the

processing  performed.  Finally,  this  paper  will  present  avenues  for  improvement  and

continuation of the project, as well as future utilization prospects.

1.1 Context

Every year, the population census mobilizes around a hundred of pollsters in the Overseas

Departments (DOM). Before this data collection phase, the inventory of buildings located in

the DOM is updated through a preliminary cartographic survey. This inventory must contain a

comprehensive list of geolocated housing units in the DOM, from which housing units are

selected for enumeration in the current year's census. This survey is specific to the DOM

because the usual administrative databases are not reliable enough to solely populate this

inventory.

The cartographic survey helps to feed the directory of located buildings (RIL). A high-quality

RIL allows pollsters to more easily locate housing units to be surveyed in a given year. The

impact  of  a  good  RIL  on  the  quality  of  estimates  produced  by  INSEE  is  therefore

considerable. The use of satellite imagery, particularly methods for detecting housing units in

these  images,  could,  for  example,  improve  the  organization  of  the  cartographic  survey,

particularly by calibrating efficiently the interviewers' workload in the territories surveyed.

Moreover, in response to the demands of Mayotte's elected officials, INSEE replaced general

censuses with Annual Census Surveys (EAR), leading to a significant data gap since 2017



and delaying  population  updates  until  2025,  making the use of  satellite  data  crucial  for

improving the accuracy of census information and calibrating EAR preparation.

1.2 Global structure of the project

Schematically, we want to be able to automatically detect changes from shots of the same

territory  at  two  different  dates.  To  do  this,  we  train  an  algorithm  capable  ultimately  of

producing housing masks from a given image, that is to say, a layer of polygons representing

inhabited buildings on a  map.  By analyzing the differences between two housing masks

produced  for  the  same  territory  at  two  different  times,  we  can  try  to  deduce  the  main

movements between these two dates, notably the creation and destruction of housing (cf.

Figure 1). Measuring these evolutions can then extend past population estimates made by

INSEE and also help identify areas where cartographic survey should focus.

Figure 1: Segmentation Strategy for change detection

Training these housing detection algorithms requires the creation of a large number of pairs

(images, masks) where:

• Images are divided into tiles small enough to be absorbed by the deep learning

model. It is also necessary to ensure the absence of cloud cover, making analysis

impossible.

• Masks are arrays of the same dimension as the image, drawing the presence of

housing with values of 0 or 1, aggregating into polygons drawing the buildings. These

masks  are  created  from  data  from  INSEE,  notably  the  topographic  database

(BDTOPO)  provided  by  the  french  national  geographic  institute  (IGN).  These

examples are built from past data and will be used for detection on more recent shots

for which these annotations are not available.

Thus, the project as it exists today can be broken down into several distinct parts:



• A first processing chain includes the creation of pairs (images, mask) from IGN

data which will feed the algorithm.

• Another processing chain completely automates the training of algorithms from the

data created in the upstream chain. The use of services such as Argo-workflow and

MLFlow allows for  controlled production deployment, training history,  and rigorous

reproducibility of the training context.

• The  last  processing  chain  consists  of  analyzing  the  predictions  made  by  the

algorithm  and  providing  visual  and  statistical  results  for  investigators  and  INSEE

office staff wishing to compare these predictions with population figures established

by INSEE through the population census.

2. Data preparation

2.1  Satellite images

Several  sources  of  image  data  were  considered  for  this  work.  In  satellite  imagery,  a

distinction  is  made  between  high-resolution  data  and  very  high-resolution  data.  In  the

following,  we  will  focus  on  PLEIADES  data  with  very  high  resolution.  These  data  are

produced by the company Airbus and are retrieved and concatenated by IGN. Thus, this

organization provides us with complete coverage of the Antilles territories every year. Two

characteristics  are  very  important  when it  comes to  satellite  images.  The  first  is  spatial

resolution, which is the surface covered by a pixel:  the higher  the spatial  resolution,  the

smaller the surface covered by a pixel. For PLEIADES data, the spatial resolution is 0.5m.

For comparison, the spatial resolution of Sentinel 2 images is 10 m, which is 20 times lower.

The second characteristic is temporal resolution, i.e., the frequency at which a photograph of

the ground in a given area can be obtained. The higher this is, the more recent and therefore

relevant the available images will be for the desired use case. The images obtained are via

optical measurements, which implies that excessive cloud cover during satellite imaging will

delay acquisition for the concerned territory. On average, 8 months are therefore needed to

have  a  complete  cloud-free  acquisition  of  these  territories  through  PLEIADES  satellite

imaging, which leads to a gap between the reality of the terrain and that photographed by the

satellites. 

2.2  Annotations

The objective here is to create, from a set of images covering the DOM territories, housing

masks associated with the images. It is worth noting here that manual labelling is the best

solution from the perspective of  the quality of  the generated masks,  since the time gap



between the date of constituting the databases used to annotate the images and the date of

capturing these images will  necessarily  lead to  imperfectly  synchronized masks with  the

images. The cost of such manual labelling is prohibitive given the size of the project team

and the available working time. Therefore, automatic labelling was performed using the IGN's

topographic database (BDTOPO). This database precisely locates the outline of buildings

each year with polygons, obtained through a combination of aerial photography processing

and manual annotations by IGN agents.

However, BDTOPO cannot directly address the use cases mentioned in the introduction for

the following reasons:

• The yearly BDTOPO produced aims to represent the spread of buildings for  a

given  year.  However,  polygons  outlining  buildings  for  a  given  year  may  appear

different between different versions without this evolution being linked to real creation.

This situation may occur if the methods for detecting buildings by IGN improve from

one year to another, and a building previously undetected is eventually detected.

• A given territory is covered by satellite image tiles, which are obtained gradually as

the satellite  passes over  the  territories,  depending  on cloud  cover  and the tilt  of

optical  radars.  These  tiles  are  thus  obtained  at  different  times  of  the  year.

Consequently,  the representation of  a territory by satellite imagery is a mosaic of

images obtained at different times. Therefore, it is hardly conceivable that BDTOPO

will perfectly coincide with these images, so it cannot be used as is. 

• The updating of BDTOPO by IGN is not guaranteed, so INSEE must internalize

this building detection process.

An example of the annotation obtained via the BDTOPO is shown in Figure 2. Subsequently,

we  will  train  an  algorithm whose  generalization capacity  will  not  suffer  from the  above-

mentioned annotations mistakes.

Figure 2: Annotations obtained with BDTOPO on a PLEIADES example



It should be noted that the masks produced automatically using BDTOPO are not limited to

the  concept  of  housing  but  rather  to  that  of  buildings.  This  is  problematic  because  an

algorithm trained on these masks will also only be able to detect buildings.

2.3 Segmentation Models

Segmentation  models  can  be  seen  as  algorithms  that  classify  each  pixel  in  the  image

individually. In the context of building detection, a segmentation algorithm takes an image as

input and assigns a probability of building presence to each pixel (0,1). The predicted mask

is then obtained by thresholding this probability and classifying all pixels in the image for

which the probability exceeds a given threshold as buildings.

Segmentation models are often based on a U-shaped structure composed of:

• A descending part, the encoder, which transforms the input image into a reduced-

size numerical  vector  compared to the initial  number of  pixels  in the image. The

encoder part is essentially a standard convolutional neural network as presented in

the previous section.

• An ascending part, the decoder, which starts from the obtained vector (also called

embedding)  and  reverses  the  process  through  operations  known  as  inverse

convolutions to output an image of the same dimension as the input.

The quality of the segmentation process by the algorithm is closely related to the quality of

the encoder, which aims to send the images into a space that is expressive and interpretable

by the decoder.

Both parts (encoder and decoder) are parameterized and are thus improved during training.

Many layers eventually separate the input image from the produced mask. Due to successive

Max Pooling operations, whose primary purpose is to reduce the number of parameters in

the network, local information is lost through the layers of the network, and the vectorized

information  output  by  the  encoder  no  longer  sufficiently  reflects  the  local  phenomena,

smoothed by this aggregation operation.  In Visin et al.  2016 and Jégou et al.  2017, the

authors present segmentation model structures that address this issue. In these models, the

elements output by certain layers serve as input to several of the following layers, visually

bypassing certain layers. The U-net, introduced by Ronneberger, Fischer, and Brox in 2015,

extends this logic by connecting layers from the contracting part to the expansive part. Figure

16 illustrates the structure of the U-net. Other architectures, such as those presented in Chen

et  al.  2017,  rely  on  specific  convolutional  forms  (such  as  atrous  convolution)  aimed  at



minimizing the summarizing effect  of  Max Pooling operations.  These structures are very

complex, and several simplified versions have been produced subsequently.

More recently, the construction of segmentation models has been greatly inspired by Large

Language Models (e.g., GPT), whose effectiveness is well established. By analogy with word

sequences,  if  we  consider  images  as  sequences  in  two  dimensions,  we  can  apply

"transformer" structures (cf. Vaswani et al. 2017) to them. Thus, in Dosovitskiy et al. 2021,

the authors demonstrate that a classification model can be trained using only transformers

(as opposed to convolutional neural networks). In Xie et al. 2021, the authors generalize this

approach to segmentation models using a decoder based on a transformer structure. The

main advantage of using such structures is the efficiency gain (performance at fixed number

of  parameters),  which  contrasts  with  the  convolutional  neural  network-based  structures

presented earlier. The training described below will rely on a Segformer-type model.

2.4 Results

Training  of  a  Segformer  network  was  conducted  using  PLEIADES  images  covering

Martinique  and  Guadeloupe  in  2022.  To annotate  these  images,  we  used  the available

versions of  BDTOPO produced by IGN,  accepting the inevitable divergences due to the

different  temporalities  of  image  captures  and  topographic  database  construction.  The

algorithms  trained  from  this  training  set  can  only  detect  buildings.  A  Segformer-type

segmentation model was trained on the obtained pairs.  Training lasts an average of  ten

hours.

To evaluate  the results of  our algorithm during training,  some correctly labelled areas of

Mayotte were selected. We calculate the average Intersection Over Union (IOU) obtained on

the considered dataset. IOU measures the overlap of the algorithm's predictions with known

annotations,  ranging  between 0 (no overlap)  and  1  (perfect  overlap).  At  the  end  of  the

training,  the algorithm's  performance  on  the  test  set  was  75  %.  A  comparison  of  2023

predictions for the island of Mayotte and a map of favored or non-favored neighbourhoods in

Mayotte is shown in figure 3. The built and inhabited areas are highlighted on the map on the

left. This general view of the outputs helps to justify the relevance of the analysis: with the

trained model, we are able to delineate the built-up areas visible on satellite images.



Figure 3: Comparison of model predictions for Mayotte with statistics produced by INSEE 

Focusing on more specific  areas,  i.e.,  zooming  in  on  the cartographic  representation  of

polygons, we observe that the model is capable of automatically drawing the buildings. The

example  Figure  5  presents  predictions  made  on  images  from  2023.  These  predictions

superimposed on 2020 images show built-up areas in 2023 that were not built-up in 2020.

Figure 4: 2023 Predictions on a 2020 background (L) and on a 2023 background (R)

The results are satisfactory, as we highlight the appearance of new buildings and underscore

the need to allocate human resources for the mapping of  this particular area. Moreover,

increasing the precision and completeness of the predictions requires training new, either

more  efficient  models  or  models  trained  on  other  images  (see  the  previous  section).

Secondly, it seems impossible to ask surveyors to examine the entire island by zooming in

so much. Therefore, for a proper dissemination of the results, it is necessary to develop tools

that allow for both quicker and easier reading. The work presented in Appendix A presents a

method  for  extracting  the  main  movements  in  building  creation  or  destruction  from

predictions made in 2020 and 2023 by the algorithm.



3. Discussion

The final uses of the presented work (population estimates and workload planning) depend

entirely on the quality of the predictions made by the algorithm. There are numerous possible

directions to try to improve these predictions, particularly at the level of the training data.

Currently, the algorithm is only trained on the year 2022 and on Martinique and Guadeloupe.

It  is  necessary  to  test  the  algorithm's  generalization  ability  by  reducing  or  expanding,

temporally or geographically, the training set that feeds its learning.

The masks built from satellite images are masks of buildings, not masks of dwellings, which

means the algorithm cannot  distinguish between housing and buildings.  Manual  labeling

work could correct the masks produced via BDTOPO in this regard. Other data sources,

outside of INSEE, could be explored to create masks, such as OpenStreetMap.

At the image level itself, there are multiple possibilities: other sources of satellite imagery are

available,  such  as  Sentinel  images or  Spot  satellite  images.  These  sources  have  lower

spatial  resolutions than PLEIADES images, but  their  temporal  resolution is higher,  which

means  they  could  be  used  to  make  provisional  estimates  while  waiting  for  complete

PLEIADES coverage. Work on Sentinel 2 imagery is presented in the Nabec 2023 report and

shows that a very satisfactory level of building prediction can be obtained from these lower-

resolution images. Sources of stereoscopic images add additional data on the altitude of the

visualized buildings and also deserve to be explored.

Reflections on the selected algorithm are equally important. Indeed, the scientific literature is

abundant on segmentation models, so it is necessary to conduct more frequent technical

monitoring  on  the  subject.  Some  models  can  theoretically  adapt  to  images  of  different

resolutions.  Thus,  the training of  these algorithms could  be augmented by  images from

multiple sources,  including pre-annotated datasets made available by academic research

efforts. Appendix B provides details of the technical stack and skills required to develop this

work. A working document produced at INSEE details the work presented in this paper and is

available here  .  
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APPENDIX A: Cleaning of the Subtraction

In this section, we present cleaning operations, which a posteriori make it possible to display

changes based on the difference in masks at the output of the algorithm. We start by naively

differentiating  between  the  2020  and  2023  predictions  obtained  using  the  algorithm  on

Mayotte.  Figure  1  shows  the  resulting  polygons.  Due  to  the  imperfect  superposition  of

predictions from two different years, some building contours remain as residuals. We notice

that the outlines of the buildings do not necessarily have the smallest area, but they have a

characteristic shape: they are particularly elongated. The compactness index calculates a

ratio between the perimeter and the area of a polygon. It thus varies between 0 and 1. The

value 0 is a perfectly elongated line, while the value 1 corresponds to a perfect circle. 

Figure 1: Mask of differences obtained by subtracting algorithm‘ s 2020 predictions from

2023 predictions on an example in Mayotte

Before filtering the polygons, a threshold must be determined. Here, we choose a threshold

of 0.1. This decision is not simple and was approached gradually, by progressively observing

the state of the polygons displayed on the map, and by visually and manually comparing

them to the images of 2020 and 2023. 



Finally, we can filter the results of this subtraction and obtain the visualization (Figure 2) of

the  real  modifications  to  the  state  of  the  buildings,  which  precisely  corresponds  to  the

objectives of the project.

Figure 2: Mask of differences obtained after eliminating residues with too low a

compactness index

These  "cleaned"  polygons  now support  the  census  figures  in  Mayotte,  in  particular,  by

providing a database on housing, on which a population estimate can rely and corroborate

the figures produced by the annual surveys. They can also direct and support investigators

for the cartographic survey.

However, regarding this second task, the data can be exploited to produce statistics and

cartographic visualization by block, for example. Thus, by highlighting the geographical areas

that  are  evolving  the  fastest,  by  ranking  the  blocks  according  to  their  importance  as

cartographic  support,  we  can  provide  the  most  precise and useful  information  possible.

These are statistical works that we are able to do.



APPENDIX B: Technical Stack/ Technical Debt

Here, we highlight all the tools and skills required for the existence, maintenance, and future

development  of  this  project.  Firstly,  a  solid  expertise  in  the  INSEE  databases  is

indispensable. A good understanding of databases and geographic information systems is

crucial for manipulating building polygons, housing coordinates (x,y), and geolocated image

pixels. 

Additionally, the Python package astrovision (https://github.com/InseeFrLab/astrovision) has

been developed to facilitate the manipulation of images and associated masks. Basic skills in

statistical  learning are also required to avoid significant  overfitting errors.  Furthermore,  a

slightly deeper understanding of deep learning algorithms is necessary, along with the ability

to  comprehend  and  reproduce  models  presented  in  the  latest  research  articles  on  the

subject.

Lastly,  considerable  effort  has  been  made  to  capitalize  on  all  trainings,  ensure  their

reproducibility, and facilitate their execution, particularly through the use of and expertise in

monitoring tools such as MLFlow (Figure 1) or task programming tools like Argoworkflow.

Figure 1: Example of an interface on MLFlow for monitoring algorithm training.  

Regarding the management of geographic data (images, polygons, administrative has been

implemented to dynamically serve image tiles and predictions generated by the algorithms

over multiple years and territories.



Finally, a web application developed in React is used to highlight the algorithm's results and

work on the difference of the aforementioned masks to allow validation by INSEE workers in

the  office,  plan  the  cartographic  survey,  and  retrieve  produced  evolution  statistics.  This

application is also very useful for the project team to assess at a glance and on a large scale

the relevance of our algorithms.

Figure 2: Web Application querying the results of the algorithm and the images hosted on

the GeoServer

All the technical blocks presented here mentioned here are hosted on INSEE servers, and

their integration requires mastery of application deployments via the Kubernetes container

management tool.  Hence, significant technical  debt has accumulated on each link of the

processing chain, and maintaining the entire system would already require a full-time team of

several people. The diagram in Figure 3 summarizes all the tools and skills mobilized on the

project.


