

Identifying Traffic Strategies for Wildfire **Evacuations using Past Behaviour of Evacuees**

L RESUME Group

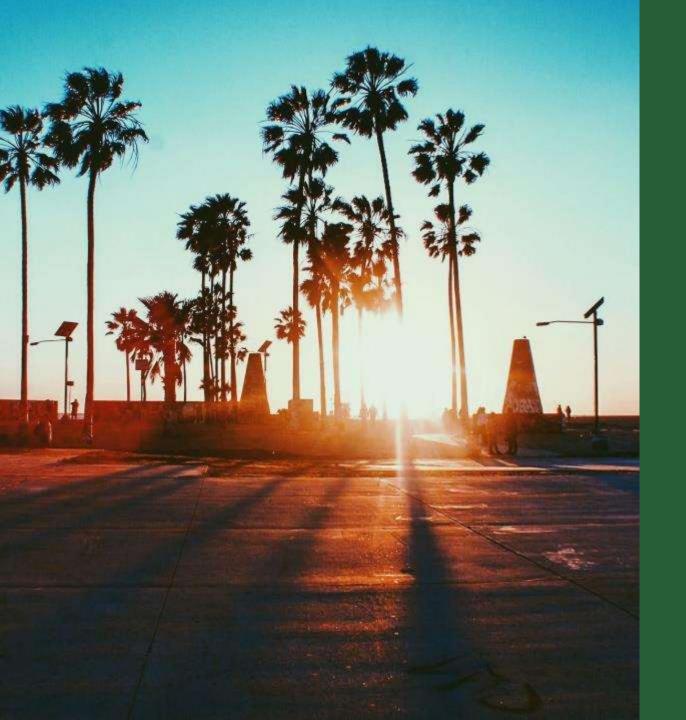
RESILIENT AND SUSTAINABLE MOBILITY & EVACUATION GROUP

Institute of UNIVERSITY Transportation OF Studies CALIFORNIA

California Resilient and Innovative Mobility Initiative

Stephen Wong, Ph.D. Assistant Professor

Outline



Context

Transportation Choices in Wildfires

Traffic Strategies

CONTEXT

Large-Scale Evacuations

- One of the primary methods to safeguard human life
- Consistently large wildfire evacuations in the U.S. and Australia
- Medium-sized evacuations in Canada, Portugal, Spain, Greece, Chile, etc.

Fort McMurray Wildfire, Alberta (2016)

Source: Greg Halinda/AP

Wildfires in California (Cal Fire, 2021)

Year	Incidents	Acres Burned	Structures Destroyed	Fatalities	Evacuation Orders
2017	9,270	1.55 million	10,280	47	
2018	7,948	1.98 million	24,336	100	1.1 million people (Wong et al., 2020a)
2019	7,860	0.26 million	732	3	
2020	9,917	4.26 million	10,488	33	+350,000 people
2021	7,396	2.57 million	3,846	3	(research in progress)
TOTAL	42,391	10.62 million	49,682	186	+1.45 million people

Woolsey Fire, CA (2018)

Source: Grant Denham

Three Critical Evacuation Challenges (Wong, 2020)

- 1) Non-compliance to evacuation orders
- 2) Congestion and evacuee risks
- 3) Equity for underserved populations

EMERGENCY EVACUATION ROUTE

7

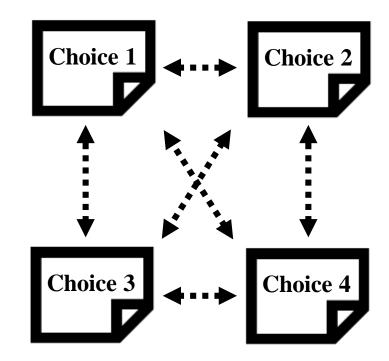
Focus of Presentation

1) Evacuee behaviour for guiding strategies

2) Traffic and transportation response strategies

8

TRANSPORTATION CHOICES IN WILDFIRES


Latent Classes and Joint Evacuation Behavior

• Wong, S., Broader, J., Shaheen, S. Walker, J. (2022). Understanding California Wildfire Evacuee Behavior and Joint Choice-Making. *Transportation, Springer*

Joint Correlation and Decisions

- Complex decisions in hazards that impact the transportation system
- Work has been done on joint choices in evacuations but only considering two choices at a time (Fu and Wilmot, 2004; Fu et al., 2006; Gudishala and Wilmot, 2012; Bian, 2017; Bian et al., 2019; Sarwar et al., 2019; Gehlot et al., 2019)
- Joint: Modeling more than two choice variables within the same model (Wong et al., 2020)
- Portfolio choice model (PCM) originally developed for tourism choice (Dellaert et al., 1997; Van Cranenburgh et al. 2014)

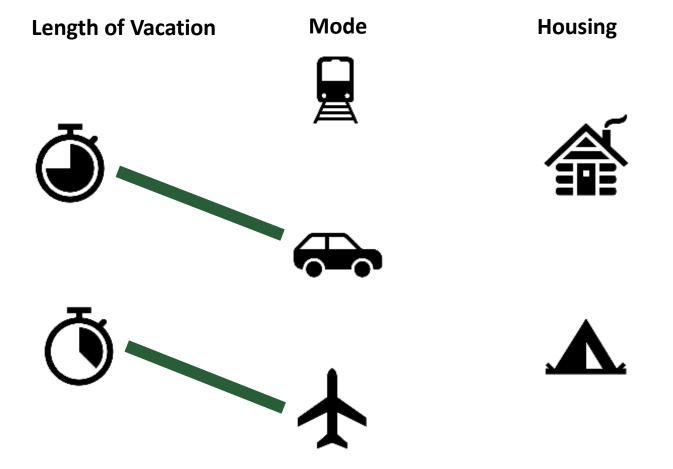
Data in Summary

• Online survey to survivors of wildfires in California

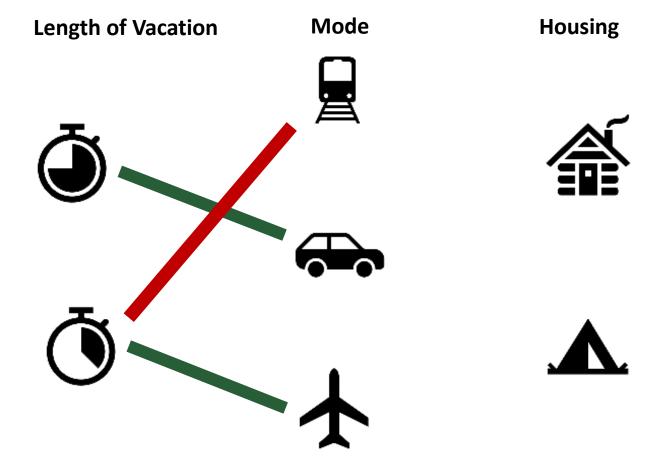
Wildfire	Survey Sample
2017 Southern California Wildfires	226
2018 Carr Wildfire (Redding, California)	310

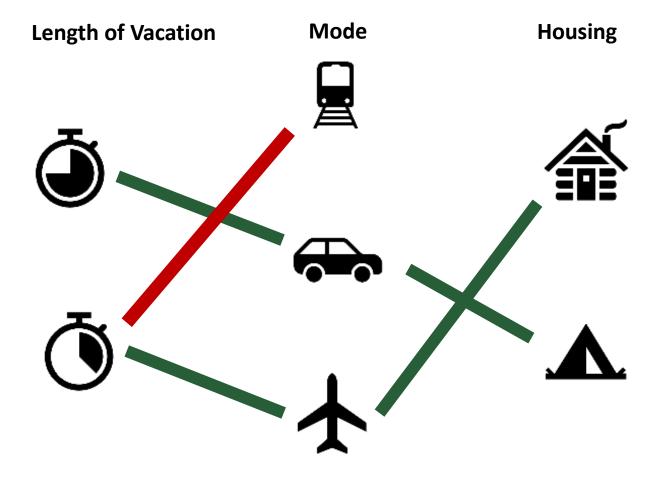
2017 December Southern California Wildfires

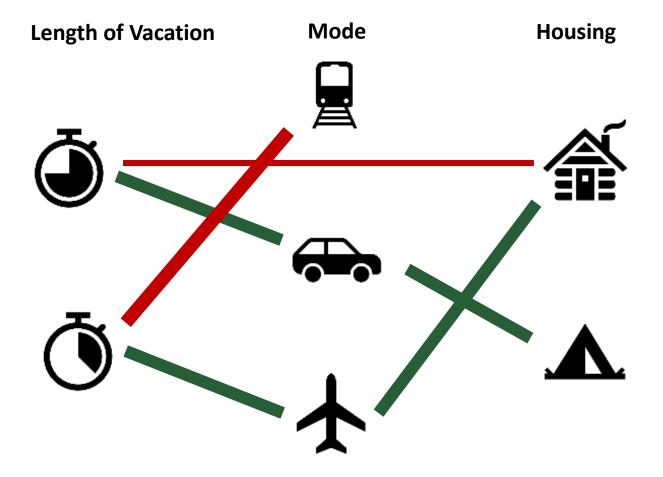
Length of Vacation


 $\overline{}$

숫


Housing





Portfolio Bundles

Departure Day

Immediate Not immediate

Departure Timing by Hour Night

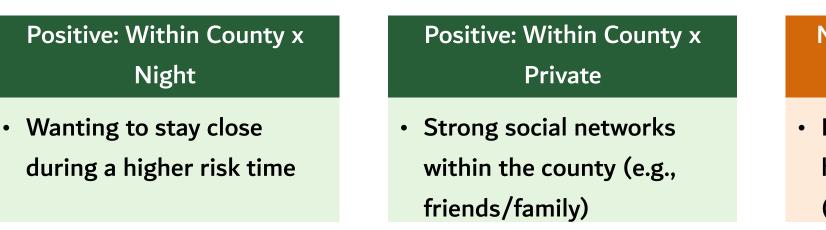
Day

Destination Choice

Within county Outside of county

2+ vehicles Other

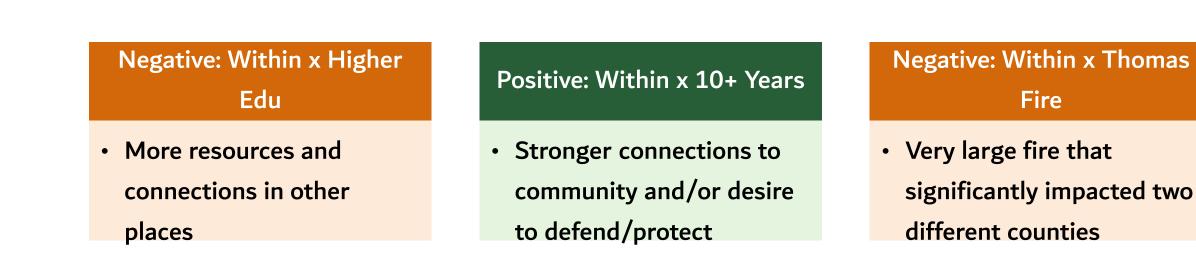
Public Private


Primary Route by Road Type

Highway Non-highway

PCM Within County – Interactions (Selected)

	Southern California Wildfires			Carr Wildfire			
nteractions Est. Coef. Std. Error p-value			Est. Coef.	Std. Error	p-value		
Within County x Night	1.12	0.35	0.001***	0.73	0.30	0.014*	
Within County x Private	0.58	0.38	0.120	0.87	0.36	0.016*	
Within County x Highway	-0.99	0.52	0.057	-1.22	0.29	<0.001***	

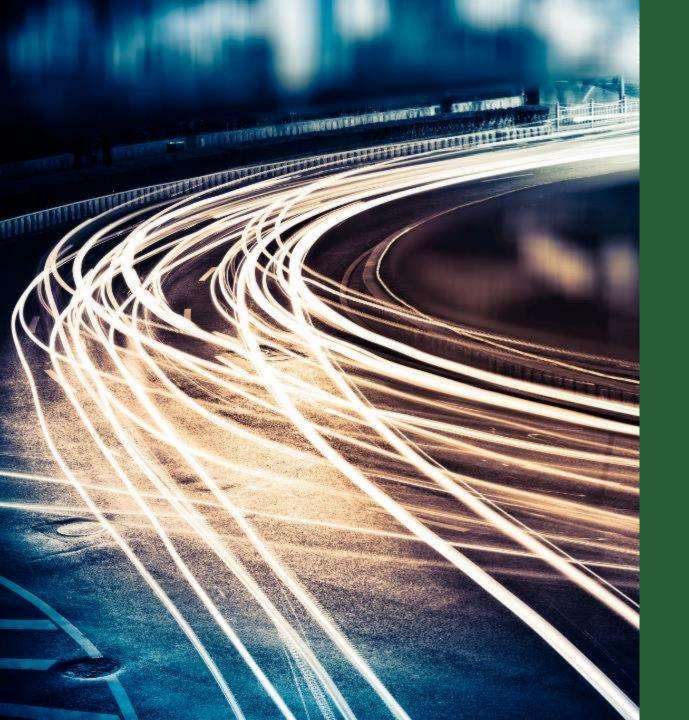


Negative: Within County x Highway

 No need to travel on highways if staying close (can take local roads)

PCM Within County – Demographics (Selected)

	Southern California Wildfires			Carr Wildfire		
Variable	Est. Coef.	Std. Error	p-value	Est. Coef.	Std. Error	p-value
Higher Level Degree (Master's, Professional, Doc.)	-0.63	0.39	0.101	-0.68	0.29	0.018 *
Living in Residence for More than 10 Years	1.38	0.41	0.001 **			
Impacted by Thomas Fire	-2.97	1.09	0.007 **			



Primary Takeaway

 People make evacuation choices jointly, and this behavior should be reflected in models and transportation response strategies for wildfires evacuations.

21

Dec - B

TRAFFIC STRATEGIES

Demand-Side (Adapted from Lindell et al., 2019 and Wong, 2020)


Strategies

Timely departures

Phased evacuation

Triggered evacuations

Vehicle reduction

Supply-Side (Adapted from Lindell et al., 2019 and Wong, 2020)

Strategies

Contraflow

Shoulder usage

Ramp closures

Route closures

Turn restrictions

Signal priority

Manual traffic control

Public transit

Mode shift

Parking restrictions

Information-Side (Adapted from Lindell et al., 2019 and Wong, 2020)

Strategies

Rapid information delivery

Evacuation preparation

Route preparation

Dynamic route guidance

System monitoring

Travel information

Credit: Stephen Wong

Policy Implications for Portfolio Choice

Immediate x Night (Pos.)

- **Demand-side:** Phased evacuations can spread out demand during this peak period.
- **Supply-side:** Quick and low-resource responses should be used
- Information-side: Travel information and dynamic route guidance can help evacuees navigate.

Carr Fire, CA (2018)

Credit: Hung T. Vu

Policy Implications for Portfolio Choice

Within County x Night & Within County x Private (Pos.)

- **Demand-side:** Vehicle reductions may be feasible including the prepositioning of vehicles.
- **Supply-side:** Transportation responses should be highly localized.
- Information-side: Evacuation preparation should encourage identifying a shelter.

Camp Fire, CA (2018)

Source: Josh Edelson / Getty Images

Policy Implications for Portfolio Choice

Within County x Highway (Neg.)

- **Demand-side:** Phased evacuation plans should assume less highway travel.
- **Supply-side:** Contraflow will not be effective unless it is used at a local bottleneck.
- Information-side: Route preparation should focus on arterial roadways and main streets.

Blue Ridge Fire, CA (2020)

Source: David McNew/Getty Images

Conclusions and Takeaways

- Value in discrete choice modeling
- Information from past disaster behavior
- Different strategies for different situations and contexts.
- Highly-localized evacuation resources for wildfires

Acknowledgements - Funders

Acknowledgements - Research Partners

• Agencies/organizations in California (80+)

METROPOLITAN TRANSPORTATION

COMMISSION

Stephen Wong, P.D. Assistant Professor University of Alberta

Email: <u>stephenwong@ualberta.ca</u> Website: <u>www.wong-stephen.com</u>

Leading with Purpose.

32

Citations

- Bian, R. (2017). Development of a Mode and Destination Type Joint Choice Model for Hurricane Evacuation. 94.
- Bian, R., Wilmot, C. G., Gudishala, R., & Baker, E. J. (2019). Modeling household-level hurricane evacuation mode and destination type joint choice using data from multiple post-storm behavioral surveys. Transportation Research Part C: Emerging Technologies, 99, 130–143. https://doi.org/10.1016/j.trc.2019.01.009
- Cal Fire (2021). Incidents Archive. California Department of Forestry and Fire Protection. https://www.fire.ca.gov/incidents/2021/
- Dellaert, B. G. C., Borgers, A. W. J., & Timmermans, H. J. P. (1997). Conjoint models of tourist portfolio choice: Theory and illustration. Leisure Sciences, 19(1), 31–58. https://doi.org/10.1080/0149040970951223
- Fu, H., & Wilmot, C. (2004). Sequential Logit Dynamic Travel Demand Model for Hurricane Evacuation. Transportation Research Record: Journal of the Transportation Research Board, 1882, 19–26. https://doi.org/10.3141/1882-03
- Fu, H., Wilmot, C. G., & Baker, E. J. (2006). Sequential Logit Dynamic Travel Demand Model and Its Transferability. Transportation Research Record, 10.
- Gehlot, H., Sadri, A. M., & Ukkusuri, S. V. (2019). Joint modeling of evacuation departure and travel times in hurricanes. Transportation, 46(6), 2419–2440. https://doi.org/10.1007/s11116-018-9958-4
- Gudishala, R., & Wilmot, C. (2012). Comparison of Time-Dependent Sequential Logit and Nested Logit for Modeling Hurricane Evacuation Demand. Transportation Research Record: Journal of the Transportation Research Board, 2312(1), 134–140. https://doi.org/10.3141/2312-14

Citations

- Intergovernmental Panel on Climate Change (2014). Synthesis report: summary for policy makers. Pachauri, R. K., Gomez-Echeverri, L., & Riahi, K. https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf
- Lindell, M., Murray-Tuite, P., Wolshon, B., & Baker, E. J. (2019). Large-scale evacuation. Routledge.
- McCaffrey, S., Wilson, R., & Konar, A. (2018). Should I Stay or Should I Go Now? Or Should I Wait and See? Influences on Wildfire Evacuation Decisions. Risk Analysis, 38(7), 1390–1404. https://doi.org/10.1111/risa.12944
- Mowery, M. & Punchard, D. (2021). Land Use Planning Approaches in the Wildland-Urban Interface. Community Wildfire Planning Center. https://www.communitywildfire.org/wp-content/uploads/2021/02/CWPC_Land-Use-WUI-Report_Final_2021.pdf
- Reidmiller, D. R., Avery, C. W., Easterling, D. R., Kunkel, K. E., Lewis, K. L. M., Maycock, T. K., & Stewart, B. C. (2018). Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program. https://doi.org/10.7930/NCA4.2018
- Sarwar, M. T., Anastasopoulos, P. C., Ukkusuri, S. V., Murray-Tuite, P., & Mannering, F. L. (2018). A statistical analysis of the dynamics of household hurricane-evacuation decisions. *Transportation*, 45(1), 51-70.
- Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., ... & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology letters, 21(2), 243-252.
- Urata, J., & Pel, A. J. (2018). People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning. Risk Analysis, 38(5), 889–905. https://doi.org/10.1111/risa.12931

Citations

- USGCRP. (2017). Climate Science Special Report. U.S. Global Change Research Program. https://science2017.globalchange.gov/chapter/executivesummary/
- Van Cranenburgh, S., Chorus, C. G., & van Wee, B. (2014). Vacation behaviour under high travel cost conditions A stated preference of revealed preference approach. Tourism Management, 43, 105–118. https://doi.org/10.1016/j.tourman.2014.01.022
- Wong, S. (2020). Compliance, Congestion, and Social Equity: Tackling Critical Evacuation Challenges through the Sharing Economy, Joint Choice Modeling, and Regret Minimization. University of California, Berkeley. https://escholarship.org/uc/item/9b51w7h6
- Wong, S. D., Broader, J. C., Walker, J. L., & Shaheen, S. A. (2022). Understanding California Wildfire Evacuee Behavior and Joint Choice-Making.
- Wong, S. D., Pel, A. J., Shaheen, S. A., & Chorus, C. G. (2020). Fleeing from hurricane Irma: Empirical analysis of evacuation behavior using discrete choice theory. Transportation Research Part D: Transport and Environment, 79, 102227.
- Woo, M., Hui, K. T. Y., Ren, K., Gan, K. E., & Kim, A. (2017). Reconstructing an emergency evacuation by ground and air the wildfire in Fort McMurray, Alberta, Canada. Transportation Research Record, 2604(1), 63-70.
- Wotton, B. M., Flannigan, M. D., & Marshall, G. A. (2017). Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters, 12(9), 095003.