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Abstract  

The paper shows the results of an empirical evaluation about the use of Random Forest, 

Recurrent Neural Network and Long Short-Term Memory for administrative longitudinal data. 

Those machine learning methods are used for the prediction of the attained level of education 

for the Italian population with respect to the subset of units of the Italian register of individuals 

covered by administrative sources. The assessment is made by comparing the results of the 

predictions with the observed data available in the administrative sources and is carried out by 

looking at the distributional preservation and the prediction of each single unit, that is from a 

macro and micro perspective.  
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1. Introduction 

The increasing availability of administrative sources has significantly changed the official 

statistical production system, moving towards a register-based approach. Advantages are 

expected in terms of reduction of costs and of response burden, and the possibility of having 

micro data enhancing the production of detailed statistics. However, some issues should be 

dealt with when using administrative sources , typically delays in data availability and coverage 

problems because their target population may differ from the statistical population of interest. 

In this context, the production of a complete and coherent dataset becomes a crucial activity, 

making necessary the application of various procedures for estimating delayed and missing 

data. An important peculiarity is that, once the data time-lag is overcome, updated 

administrative information becomes available, providing the opportunity for an evaluation and 

a refinement of the statistical procedures used to transform administrative data to meet our 

statistical interests. An important subject for which administrative information is available is the 

Education of people. In the Italian National Institute of Statistics (Istat), information on students, 

school attendance and educational level (ALE) are available from the Ministry of Education 

since 2011. To obtain a yearly estimate of the ALE for the Italian resident population, Istat has 

adopted a mass imputation approach that integrates administrative, survey and the 2011 



 

 

 

  

census data (Di Zio et al., 2019). To fully leverage the opportunities presented by longitudinal 

administrative sources and the potentiality of machine learning methods (De Fausti et al., 

2022), we study Random Forest (RF), Recurrent Neural Network (RNN), and Long Short-Term 

Memory (LSTM) to predict the ALE. Section 2 and 3 report details on the data and the methods 

used. Section 4 describes the study and the results obtained. Some conclusions are discussed 

in Section 5.  

2. The use case: administrative data for the ALE 

The strategy behind the new population census relies on the integration of the information 

stored into registers with data specifically collected through a sample survey. In this context, 

the Base Register of Individuals (BRI) is the basis of the new population census, referred to as 

the Permanent Census. The register is constructed at individual record level, primarily through 

extensive integration of administrative data. The set of variables derived from administrative 

sources, named register variables, includes demographic information, such as gender, age, 

marital status, place and date of birth and citizenship that are mainly derived from demographic 

sources. The BRI, however, does not contain all data concerning information traditionally 

collected by the census, as for instance the ALE. Hence, to generate thematic census outputs, 

a survey has been conducted to complement and enhance the coverage and quality of the 

existing register data. Specifically, respondents are asked about their educational level. The 

high amount of available administrative information on this topic, in particular longitudinal 

information, may allow the production of ALE figures from registers as well as from the census 

survey.  

The primary sources of administrative information on ALE originate from the Ministry of 

Education, Universities, and Research (MIUR). MIUR's administrative data pertain to 

individuals enrolled in a school course from 2011 onward. For this subset of the population, 

MIUR provides information regarding the ALE and their course attendance (e.g., attending the 

first year of primary education). However, MIUR data have some informational gaps: they only 

cover individuals entering a study program after the 2011, they trace only students enrolled in 

an educational course held in Italy, and do not include qualification courses like Fine Arts, 

Drama, Dance and Music academic diplomas, as well as other training and vocational careers 

managed by Italian Regions that are not required to provide data to MIUR. The main 

consequence is a potential underestimation of ALE in the administrative source.  Another 

critical issue is the timeliness. MIUR data are typically available with a delay of 1 or 2 years 

compared to the BRI reference time.  



 

 

 

  

Due to the complexity and heterogeneity of the available information, the official procedure for 

estimating ALE relies on different imputation procedures, which are combined to address sub-

populations characterized by varying amounts of information (Di Zio et al., 2019). Specifically, 

the presence or absence of information on ALE in administrative sources determines the 

partitioning of the target population into two main subgroups: for the subset of individuals with 

available information from MIUR, ALE at time t is predicted using time-lagged data; for the 

remaining individuals, ALE from the survey is used as response variable. The general idea is 

to estimate a model for the prediction of ALE given the values of known covariates X. 

Considering I(t) as the target variable (i.e., ALE at time t), the conditional probabilities h(I(t) |X) 

is estimated and then It is imputed by randomly selecting a value from this distribution. 

In this study, the focus is on the sub-population where longitudinal administrative information 

is available, comprising approximately 22% of the overall population. The conditional 

probabilities h(I(t) |X) are estimated by means of different machine learning models that 

leverage the longitudinal information available from administrative sources.  

Once the data time-lag has elapsed, updated administrative data become available. In 2023, 

administrative information pertaining to 2021 are available and can be regarded as the gold 

standard for evaluating results generated by the various machine learning models. This 

enables a more accurate evaluation and potentially a fine-tuning of the procedure. 

3. Machine learning with longitudinal data 

In recent years, machine learning methods for classification and prediction have emerged as 

an alternative to the classical statistical approach.  In addition to classification problems that 

statically associate input with output, within ML it is possible to model time using so-called 

dynamic classifiers. 

Recurrent Neural Network (RNN), where a recurrent connection is introduced in the network, 

is a possible approach to dynamic ML (De Mulder, 2015,   Sherstinsky, 2020). Each neuron in 

an RNN maintains a hidden state, which captures information about previous inputs in the 

sequence and influences future predictions. This capability makes RNNs particularly effective 

for tasks involving sequential data processing, such as language modelling, speech 

recognition, and time series prediction. If the series are more than 10 time points, RNN can 

suffer from difficulty in capturing long-term dependencies. In addition, RNN is vulnerable to 

vanishing or exploding gradient problems. 

The Long Short-Term Memory (LSTM) is a specialized type of recurrent neural network 

architecture designed to address the limitations of RNNs in capturing long-range dependencies 



 

 

 

  

and mitigating the vanishing gradient problem. LSTM units contain a set of gates (input, forget, 

output) that regulate the flow of information through the network, enabling better preservation 

of relevant information over long sequences (Hochreiter et al., 1997). 

Finally, we consider the Random Forest (RF) (Breiman, 2001) which is an ensemble learning 

method used for classification, regression, and other tasks. RF do not explicitly account for 

time, it operates by constructing a multitude of decision trees during training and outputs the 

mode of the classes (classification) or the average prediction (regression) of the individual 

trees. RF are robust against overfitting, exhibit high accuracy, and are relatively resistant to 

noise and outliers in the data. 

4. Real data application  

The dataset for the application consists of approximately 480 thousand individuals, aged 9 or 

older, residing in the Emilia Romagna region (NUTS 2) in 2021. It includes complete 

longitudinal administrative information on ALE from 2015 to 2021, classified into 7 modalities. 

The training set for the three ML methods is composed by the subset of individuals with 

complete longitudinal information from 2015 to 2020 (t-1). The covariates considered in the 

model are the school enrolment up to 2020, as well as demographic information such as 

gender, age and province of residence. The estimated conditional probabilities for the ALE at 

2020 are then applied to one-year-forward shifted data (test set), and ALE in 2021 (t) for each 

unit in the dataset is obtained by randomly selecting a value from the estimated ALE probability 

distribution. 

The estimated ALE (𝐼) is compared with the ALE from MIUR (I) (considered as the target 

ALE value). Table 1 shows the estimates obtained with RNN, LSTM and RF compared with 

the ALE I observed in MIUR data. Since the predictions are obtained through a random draw 

from the estimated distributions, the procedures are repeated 10 times to take into account the 

variability, and the results are computed averaging over those repetitions.   

Table 1: Estimated absolute (a.v.) and percentage (%) values of ALE distribution through RNN, LSTM, 
RF and administrative ALE distribution in 2021. 

ALE 
RNN LSTM RF TRUE 

a.v. % a.v. % a.v. % a.v. % 

Primary education 120,087 25.3 120,065 25.2 120,335 25.3 120,589 25.4 

Lower secondary ed. 199,984 42.1 200,068 42.0 200,012 42.1 200,364 42.1 

Upper secondary ed. 109,082 22.9 109,829 23.1 109,164 23.0 109,134 23.0 

Bachelor’s degree 31,470 6.6 31,251 6.6 31,144 6.6 30,731 6.5 

Master degree 14,594 3.1 14,001 3.0 14,514 3.1 14,410 3.0 



 

 

 

  

PhD 214 0.0 218 0.0 210 0.0 225 0.0 

Total 475,431 100.0 475,432 100.0 475,378 100.0 475,453 100.0 

 

We remark that only modalities referring to an acquired educational level are reported, the 

class “no educational attainment” represents a residual class and is not included in the table, 

and this accounts for the discrepancy in the total amounts. 

All the methods provide an estimated distribution that is close to the target ALE distribution. 

Relative errors RRi for each ALE modality i is computed: 

𝑅𝑅𝑖  =
(𝐼𝑖 − 𝐼𝑖)

𝐼𝑖
 

where 𝐼𝑖 is the true absolute frequency of modality 𝑖 and 𝐼𝑖 is the corresponding estimated 

value. 

Table 2 shows the mean of the relative errors m(RRi) computed over the 10 repetitions. 

RF yields better results: the mean of the relative errors m(RRi) is the lowest among the three 

methods. Moreover, the standard deviation is lower for almost all the ALE modalities. We 

notice high values of RRi  corresponding to the PhD class, this is due to the very low frequency 

of this modality. 

Table 2: Mean relative error m(RRi) and standard deviation (std) computed over 10 runs for RF, RNN, 

LSTM. 

ALE 

RF RNN LSTM 

m(RRi) (std) m(RRi) (std) m(RRi) (std) 

Primary education 0.235 (0.132) 0.416 (0.039) 0.435 (0.032) 

Lower secondary ed. 0.176 (0.110) 0.190 (0.080) 0.151 (0.071) 

Upper secondary ed. 0.097 (0.059) 0.332 (0.299) 0.719 (0.561) 

Bachelor’s degree 1.343 (0.417) 2.404 (1.636) 1.996 (1.689) 

Master degree 0.874 (0.429) 3.695 (1.944) 3.278 (1.380) 

PhD 6.844 (4.529) 6.000 (7.219) 7.244 (4.936) 

Mean 1.595  2.173  2.304  

 

Table 3 shows the f1 score for each ALE class and the global f1 score. The f1 score is a 

measure of predictive performance of a classifier and it is the harmonic mean of the precision 

and recall. It thus symmetrically represents both precision and recall in one metric. The highest 

possible value is 1.0, indicating perfect precision and recall, and the lowest possible value is 

https://en.wikipedia.org/wiki/Harmonic_mean


 

 

 

  

0, if either precision or recall are zero. The calculation of the f1 score requires that a positive 

class of interest and negative complementary classes be defined. The f1 score is given by the 

formula f1=TP/(TP+0.5(TP+TN)) where TP is the number of correctly predicted instances as 

belonging to the positive class, FP is the number of instances erroneously predicted as positive 

and FN which is the number of instances erroneously predicted as negative. The calculation 

of the global f1 score (generally named micro f1) requires calculating aggregate TP, FP, FN , 

adding the partial TP, FP, FN obtained by defining each time one of the 7 classes as positive. 

Those measures are computed to assess the methods with respect to the prediction for each 

units, that is a micro-level evaluation. We notice a behaviour opposite to the evaluation of 

distribution preservation (Table 2), that is the macro-level assessment. LSTM outperforms the 

others, with a preference increasing with the highest ALE classes, in fact in the modalities until 

“upper secondary education” the f1 scores are close each other, for the classes “bachelor and 

master degree” there is a more sensible difference, and finally the f1 score for ‘PhD’ is very 

different from the others. There is a strange low value of the indicator for RNN, some more 

analysis should be performed in order to understand the reason. On the other hand, this class 

is characterised by a low frequency of observations, and probably this is the reason because 

the global f1 score of RNN is not affected by this value.   

Table 3: F1 score computed over 10 runs. 

ALE RF RNN LSTM 

Primary education 0.9950 0.9965 0.9966 

Lower secondary ed. 0.9889 0.9918 0.9920 

Upper secondary ed. 0.9138 0.9265 0.9286 

Bachelor’s degree 0.6910 0.7216 0.7340 

Master degree 0.7063 0.7353 0.7613 

PhD 0.6305 0.1625 0.8484 

Global f1 0.9450 0.9521 0.9548 

 

  The code is developed in the Python language using the machine learning library scikit-learn 

(Pedregosa, 2011) to implement Random Forests, while we used the library keras (Chollet, F. 

2015) for the deep learning algorithms RNN and LSTM. For further analysis, confusion 

matrices are reported in Appendix.  

5. Conclusions 

The paper shows the results of an empirical evaluation about the use of random forest, RNN 

and LSTM for longitudinal data. Those methods are applied to the prediction of the attained 



 

 

 

  

level of education for the Italian population with respect to the subset of units of the Italian 

register of individuals covered by administrative sources. The results show that random forest 

is preferable to the other methods when distributional accuracy is our main interest. On the 

other hand, when the interest is in the micro-prediction, the preference is not so evident even 

if LSTM has a slight better performance. It should be noticed that, the data used are not 

characterised by a long series, and this is certainly an element to take into account in the 

interpretation and generalisation of the results. The good behaviour of random forests, that are 

not introduced in literature mainly for dealing with the time dimension of the data, could be 

explained by the fact they – at least as used in this paper – estimate the conditional distribution 

without any particular constraint used for taking into account the time. This is certainly a 

problem when a long time series is the input of our case and in this situation models as RNN 

and LSTM, specifically introduced for these problems, can be more efficient. Further studies 

will be devoted to the cases presenting those characteristics.    
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Appendix 

Table A1: Confusion matrix (average over 10 runs): RF estimated ALE vs true ALE. 

  True ALE (observed in MIUR) 

RF estimated ALE  
0 – no ed. 
attainment  

1 - Primary 
education 

2- Lower 
secondary 

ed. 

3 - Upper 
secondary 

ed. 

4 - 
Bachelor’s 

degree 

5 - 
Master 
degree 

6 - 
PhD 

0 – no ed. 
attainment  

0 0 0 0 0 0 0 

1 - Primary ed. 61.4 119,865.1 660.7 1.8 0 0 0 

2- Lower sec. ed. 13.7 460.9 197,963.7 1,891.1 18 16.6 0 

3 - Upper sec. ed. 0 7.5 1,344.6 99,743.2 6,813.0 1,223.5 2.2 

4 - Bachelor’s 
degree 

0 0.9 26.7 6,336.9 21,378.6 2,982.1 5.8 

5 - Master degree 0 0.2 16.3 1,187.9 2,926.8 10,214.2 64.6 

6 - PhD 0 0 0 3.4 7.4 77.2 137.0 

Table A2: Confusion matrix (average over 10 runs): RNN estimated ALE vs true ALE. 

  True ALE (observed in MIUR) 

RNN estimated ALE  
0 – no ed. 
attainment  

1 - Primary 
education 

2- Lower 
secondary 

ed. 

3 - Upper 
secondary 

ed. 

4 - 
Bachelor’s 

degree 

5 - 
Master 
degree 

6 - 
PhD 

0 – no ed. 
attainment  

0 0 0 0 0 0 0 

1 - Primary ed. 20.0 119,912.3 649.7 3.1 1.2 1.1 1.6 

2- Lower sec. ed. 0.8 166.4 198,540.5 1,647.2 2.4 3 3.7 

3 - Upper sec. ed. 0.9 6.8 788.9 101,088.3 6,285.1 962.2 1.8 

4 - Bachelor’s 
degree 

0.6 0.5 2 5,493.6 22,441.9 2,778.5 13.9 

5 - Master degree 0.1 0.5 2 849.4 2,736.6 10,663.8 157.6 

6 - PhD 0 0.3 0.7 0 2.5 185.8 35.7 

Table A3: Confusion matrix (average over 10 runs): LSTM estimated ALE vs true ALE. 

  True ALE (observed in MIUR) 

LSTM estimated 
ALE  

0 – no ed. 
attainment  

1 - Primary 
education 

2- Lower 
secondary 

ed. 

3 - Upper 
secondary 

ed. 

4 - 
Bachelor’s 

degree 

5 - 
Master 
degree 

6 - 
PhD 

0 – no ed. 
attainment  

0 0 0 0 0 0 0 

1 - Primary ed. 21.3 119,923 644.1 0.5 0 0.1 0 

2- Lower sec. ed. 0.1 140.9 198,609.6 1,612.4 0.8 0.2 0 

3 - Upper sec. ed. 0.1 0.8 811.8 101,664.4 5,813.2 843.7 0 

4 - Bachelor’s 
degree 

0 0.1 1.6 5,677.2 22,747.3 2,304.8 0 

5 - Master degree 0 0.2 0.7 874.7 2,689.3 10,815.3 29.8 

6 - PhD 0 0 0 0 0 37.3 187.7 

 

 


