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Abstract 

Symbolic Data Analysis provides a framework for the representation and analysis of aggregated data, 
allowing keeping information about their intrinsic variability. In this work, we consider data where 
individual units, resulting from the aggregation of large amounts of microdata, are described by 
distributions of numerical variables. Each distribution is represented by a central statistic, and the 
logarithm of inter-quantile ranges, for a chosen set of quantiles. Multivariate Normal distributions are 
assumed for the whole set of indicators, considering alternative structures of the variance-covariance 
matrix. This framework is applied to the analysis of Portuguese Household Budget Survey data, where 
microdata relating to individual households are aggregated into groups based on location and income, 
resulting in distributions of the numerical variables describing expenses on different items. Model-based 
Clustering then allows obtaining a typology of the formed sociological groups. 

Keywords: aggregated data, household budget survey, histogram data, model-based clustering, 
symbolic data 

1. Introduction 

In classical Statistics and Multivariate Data Analysis data is typically represented in a data 

array where each row represents a statistical unit, for which one single value is recorded for 

each variable. This representation model is, however, too restricted when the data to be 

analysed comprises variability. That is the case when the entities under analysis are not single 

elements, but groups formed from the aggregation of the original statistical units where the 

observed variability within each group should be explicitly considered. To this aim, new variable 

types have been introduced, whose realizations are not single real values or categories, but 

sets, intervals, or distributions over a given domain. Symbolic Data Analysis (see e.g. Diday & 

Noirhomme-Fraiture (2008); Brito (2014)) provides a framework for the representation and 

analysis of such complex data, taking into account their inherent variability.  

This framework is of particular relevance in the analysis of official statistics, where the interest 

often lies in statistical units at a higher aggregated level, rather than in single individuals, and 

confidentiality issues prevent the dissemination and analysis of the microdata. Therefore, data 

should be aggregated at an appropriate level of granularity, to preserve confidentiality and 

allow for analysis at the level of interest. Furthermore, if microdata is aggregated into the same 



 

 

 

  

groups, this approach allows for the combination of independent surveys, which would not be 

possible at the individual (microdata) level. 

In this work we focus on the Portuguese Household Budget Survey. Microdata relating to 

individual households are aggregated into groups based on location and income. In the 

resulting symbolic data, units are then described by distributions of numerical attributes.  

We assume parametric models for numerical distributional variables based on the 

representation of each distribution by a central statistic, and the logarithm transformation of 

inter-quantile ranges, for a chosen set of quantiles. Multivariate Normal distributions are 

assumed for the whole set of indicators, considering alternative structures of the variance-

covariance matrix. This model then allows for Model-based Clustering of the defined groups, 

identifying sociological clusters. The identified structure is mostly connected to location rather 

than to income level. 

The remainder of the paper is organized as follows. In Section 2 we detail the representation 

model for distributional data, we describe the aggregation of the Portuguese Household 

Survey, and present our parametric model for numerical distributional variables. Section 3 

recalls Model-based Clustering, and discusses the clustering obtained on the Portuguese 

Household Survey Data. Section 4 concludes the paper, opening avenues for future research. 

2. Modelling the Household Survey Aggregated Data 

2.1 Representation of Distributional Data 

Let Y1, …, Yp be the p distributional variables, defined on a set of units S={s1, …, sn}. We 

consider that for each unit, the descriptive variables are (in general) not constant, but present 

some variability, and we assume that a set of quantiles, a probability distribution, or a sample, 

from which quantiles may be derived, are given. We represent the “values” of a numerical 

distributional variable by an ordered vector of quantiles 0i, 1i , ... , qi), where 0i and qi are 

typically either the minimum and maximum, respectively, or small and large quantiles suitably 

chosen in order to disregard severe outliers. 

The proposed model consists in representing Yj(si) by 

 A central statistic Cij, typically the median Medij or the Midpoint M�� = ����	�
��
�  ; 

 the [0, 1[ range: R1ij = 1ij −0ij 

 the [1, 2[ range: R2ij = 2ij −1ij 
 … 

 the [q-1, q[ range: Rqij = qij −(q-1)ij 
 



 

 

 

  

2.2 The Household Survey Data 

This study concerns the Portuguese Household Budget Survey (HBS), analysing data 

from 2015, which is the most recent available. The considered original microdata consist 

of the expenses, for each household, on the following items: (i) Food products and non-

alcoholic beverages; (ii) Clothing and footwear; (iii) Housing, water, electricity, gas, and 

other fuels; (iv) Home accessories, household equipment, and routine household 

maintenance; (v) Health; (vi) Transport; (vii) Communications; (viii) Leisure, recreation, 

and culture; (ix) Restaurants and hotels; (x) Miscellaneous goods and services.  

For each item, we registered the proportion of the corresponding expense on the total 

household expenses. These data were then aggregated on the basis of  

 Income class - considering 20 classes, based on equally-spaced quantiles 

 Region - NUTS 2 (North, Centre, Lisbon Metropolitan Area, Alentejo, Algarve, 

Madeira, Azores) 

 Type of area - Predominantly Rural (PRA), Medi-Urban (MUA), Predominantly 

Urban (PUA)  

leading to 20 × 7 × 3 = 420 groups. 

Each group is described by the distribution of each of the ten variables. Noting that for 

several variables there are many zeros at microdata level (sometimes extending beyond 

the 0.30 quantile), and that we observed upper outliers, we chose to represent each 

distribution by the corresponding Median, the Minimum, and the 0.40, 0.60, 0.80, and 

0.99 quantiles. Table 1 shows the distribution of variable Food for a few groups. 

Table 1: Partial view of distributional variable Food. 

Group Food 

MU-North-IncQnt3 0.2369 ; {[0.00,0.22[,0.4; [0.22,0.24[ ,0.2; [0.24 , 0.28[,0.2; [0.28, 0.42],0.19}  

MU-North-IncQnt4 0.2379 ; {[0.00,0.17[,0.4; [0.17,0.24[ ,0.2; [0.24 , 0.30[,0.2; [0.30, 0.62],0.19}  

... ... 

PUA-Madeira-IncQnt20 0.0980 ; {[0.04,0.09[,0.4; [0.09,0.10[ ,0.2; [0.10 , 0.13[,0.2; [0.13, 0.25],0.19}  

 

2.3 Parametric Models for Distributional Data 

The proposed model consists in assuming that the joint distribution of the central statistic C 

and the logarithms of the ranges Rℓ∗ = ln�Rℓ� , ℓ = 1, … , q is multivariate Normal: 



 

 

 

  

�C, R�∗ , … , R�∗ �~ N�	��μ, Σ� 

where  is the (q+1) dimensional mean vector and  is the (q+1)×(q+1) dimensional variance-

covariance matrix. 

In the most general formulation (configuration 1) we allow for non-zero correlations among all 

centres and log-ranges; for distributional variables there are however other cases of interest: 

the distributional-valued variables Yj are non-correlated, but for each variable, the centre and 

all its log-ranges may be correlated among themselves (configuration 2); centres (respectively, 

log-ranges) of different variables may be correlated, but no correlation between centres and 

log-ranges is allowed (configuration 3); centres (respectively, each log-range) of different 

variables may be correlated, but no correlation between centres and log-ranges or between 

non-corresponding log-ranges is allowed (configuration 4); and, finally, all centres and log-

ranges are non-correlated (configuration 5). 

3. Analysis of the HBS Distributional Data 

3.1 Model-based Clustering 

To organize the sociological groups in a clustering structure, and then characterize the 

obtained typology, we resort to Model-based Clustering (Banfield & Raftery (1993); Fraley & 

Raftery (2002); McLachlan & Peel (2000)). 

Model-based Clustering assumes the data arises from a distribution that is a mixture of several 

components. Each component is considered as a cluster, it is characterised by a conditional 

density/mass function, and has an associated probability or “weight”: 

f�x�, φ� = $ π& f&�x�, Θ&�
(

&)�
 

Here k is the number of components, h is the “weight” of component h, with all h > 0 and 1 

+ . . . + k = 1 ; and fh is the conditional distribution in component h, with parameters gathered 

in h. When the conditional probability is the multivariate Gaussian density, the probability 

model for clustering is a finite mixture of multivariate Normals, known as the Gaussian Mixture 

Model. In this case, h consists of the mean vectors and variance-covariance matrices of the 

descriptive variables – in our context, of all medians and log-ranges that describe the 

distributions of the original variables in each formed group. 

To estimate the parameters in h as well as membership (posterior) probabilities of each unit, 

maximum likelihood estimation is employed, leading to the maximization of the log-likelihood 

function. This is usually done by the Expectation-Maximization (EM) algorithm (Dempster et 



 

 

 

  

al. (1977)). To avoid local optima each search of the EM algorithm is replicated from different 

starting points.  

The selection of the model – in our case, the appropriate configuration of the variance-

covariance matrices, and whether they are constant across components (homoscedastic 

model) or different in each component (heteroscedastic model) – and of the number of 

components (k), we employ the Bayesian Information Criterion (BIC). The BIC aims at 

identifying a solution which maximizes likelihood, but penalizes the number of parameters 

involved to avoid overfitting. For further details, see Brito et al. (2015). 

3.2 Clustering the HBS data 

The Model-based Clustering presented above was applied to the aggregated Portuguese 

household survey data described in Section 2.2. However, 183 of the original 420 groups lead 

to degenerate intervals in some variables and were discarded, resulting in a final data set with 

287 groups and 10 distributional variables. The minimum value of the BIC was achieved by a 

heteroscedastic model with four components and diagonal variance-covariance matrices 

(configuration 5). We note that in this application, given the relatively large dimensionality of 

the unrestricted covariance matrices (a 50 by 50 matrix for each component) a parsimonious 

model was recommended, and the data suggested that taking into account different variances 

across components was more important than possible correlations between variable 

indicators. The groups are relatively well balanced across components, with 60 groups (20.9%) 

in component CP1, 67 (23.6%) in component CP2, 85 (29.2%) in component CP3, and 75 

(26.3%) in CP4. The components differ by area type and region but not much by income 

classes. Tables 2 and 3 display the component compositions across area types and regions. 

Figure 1 shows a parallel coordinate plot of the means across components. 

Table 2: Component composition across area types. 

Component Predominantly Urban Medi-Urban Predominantly Rural 

CP1 0.4833 0.5167 0.0000 

CP2 0.0896  0.0000 0.9104 

CP3 0.1765 0.1882 0.6353 

CP4 0.4667 0.5067 0.0267 

 

  



 

 

 

  

Table 3: Component composition across regions. 

Component North Centre Lisbon MA Alentejo Algarve Azores Madeira 

CP1 0.0833 0.0500 0.3833 0.0667 0.2000 0.0000 0.2167 

CP2 0.2239  0.1791 0.1493 0.0746 0.1493 0.0746 0.1493 

CP3 0.1647 0.2353 0.0941 0.2000 0.1059 0.0941 0.1059 

CP4 0.2267 0.1333 0.0040 0.2133 0.2000 0.1333 0.0533 

 

 

Figure 1: Parallel coordinate plot of the means across components. 
 

 



 

 

 

  

We note that in addition to the region and area types, the components are mostly distinguished 

by the within group variable variability, and not so much by their medians. In particular:  

 Component CP1 consists mostly of groups from urban areas, from Lisbon Metro Area, 

Algarve, and Madeira, and shows low overall variation, with high medians on transport 

expenses and negative skewness on leisure expenses. 

 Component CP2 is dominated by groups from mainly rural areas; in this component, 

variables have an overall high variation, and relatively high median on home 

accessories, leisure, and restauration & hotels expenses. 

 In component CP3 63% of the groups are from rural areas, mainly from the North, 

Centre, and Alentejo regions. In this component the variables display an overall high 

variation, with relatively high medians on food, housing and communications expenses. 

 Finally, component CP4 is formed mostly by groups from urban areas, except the 

Lisbon Metro Area and Madeira; variables are characterized by an overall medium 

variation. 

 

4. Conclusion and Perspectives 

In this paper we have proposed a novel framework for the analysis of official aggregated data, 

relying on their empirical distribution, rather than on single central statistics. Appropriate 

parametric models are considered for the numerical distributional data, allowing for their 

multivariate analysis. Portuguese Household Survey data has been aggregated into 

sociological groups of interest and analysed under this framework. Model-based Clustering 

has provided a typology of those groups. Experimental results show the pertinence and 

usefulness of the proposed approach.  

This framework is currently being extended, addressing robust estimation and (distributional) 

outlier detection, as well as other multivariate methodologies, such as MANOVA and 

Discriminant Analysis. An R Package is under development. 
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