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Abstract 

Modern data landscapes are composed of a large number of diverse but complementing datasets. For 
insightful analytics these datasets need to be semantically and technically integrated (i.e. actual data 
records need to be combined). Integration, however, poses several challenges, including determining 
which datasets are compatible for integration, understanding the technical methods for achieving 
integration, and assessing the extent of integrability and linkage rate among various datasets. 

To support users in using and combing a large variety of datasets, we maintain comprehensive metadata 
repositories at the European Central Bank (ECB). Metadata describing data products, storage and 
access roles are used to support data discoverability and accessibility. Metadata describing concepts, 
data models, transformation rules and mappings are used to support users in dataset integration and 
analysis. By leveraging extensively such metadata, we designed a fitness for integration dashboard. 
The dashboard aims to inform users about available data, illustrating how it can be integrated and the 
degree to which data aligns across common dimensions. However, the dashboard represents just the 
visual component of a broader solution. The centrepiece of the solution is a metadata-driven and fully 
automated four-step process for populating the dashboard with relevant information. In a first step, the 
process utilises metadata to identify semantic dimensions and suitable identifiers for data integration 
and aggregation. Subsequently, by leveraging logical inferencing, we ascertain which datasets can be 
integrated, determine their technical storage locations, and identify attributes for slicing data into 
semantically valuable aggregates. The third step is to query the underlying actual data and to compile 
various integration metrics to assess integrability, linkage rate and linkage weighted by relevant 
business indicators. These metrics are calculated at different levels of detail and aggregation, such as 
per country, over time, or based on other relevant breakdowns sourced from taxonomy-driven reference 
information. Finally, an interactive dashboard retrieves and visualizes these pre-computed metrics, 
along with additional business metadata related to the datasets. This dashboard efficiently serves ECB 
analysts and researchers, enabling them to make more informed decisions on utilizing the ECB's data 
for their analytical and research purposes. 

To showcase the feasibility of our approach, we implemented a prototype leveraging the ECB's data 
dictionary, an in-house Hadoop based data and analytics platform, and RShiny to construct the 
dashboard. Furthermore, the prototype demonstrates the benefit of high-quality and semantically well 
modelled metadata for supporting users in exploring and understanding the data landscape. 

Keywords: data integration, quality indicators, metadata 

1. Introduction 
More and more often, data analytics is based on combining granular datasets. The flexibility 

to integrate diverse datasets, focus on relevant aspects and aggregating data as needed 
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provides the basis for new insights. However, before diving into the analytics, users of modern, 

distributed data landscapes face the challenge to identify which datasets are compatible for 

integration. From our experience in a large ECB-internal project on data integration and data 

analytics, we found that most investigations started by looking into three questions: which 

datasets can be integrated, how to perform this integration in a semantically meaningful way 

and how well and complete the actual observations in the datasets can be linked with each 

other to obtain meaningful insights, i.e. how good is the linkage rate.  

In practice, we found that there is a prevalent approach to answering these questions: users 

leverage information on structural metadata (i.e. metadata on data models, transformation 

rules and mappings etc.) to identify common identifiers within datasets’ objects or dimensions. 

Common identifiers and time dimensions (reference or validity period) are used to link and join 

data. The resulting joint dataset is subsequently probed and explored, often looking at different 

breakdowns and relevant measures to check the linkage rate. However, the tools employed in 

this approach are used in isolation, investigations are done manually, and the same task has 

to be reiterated for every combination of datasets. 

This motivated us to investigate the potential of automating this approach, leveraging sound 

metadata descriptions for the datasets, scalable infrastructure for querying and computing data 

aggregates as well as for visualising pre-computed integration quality metrics. The vision was 

to build a fitness for integration dashboard. This dashboard aims to inform users about 

available data, illustrating how data can be integrated and the degree to which data aligns 

across common dimensions. We implemented a prototype using available information systems 

and infrastructure. The prototype demonstrated the feasibility of the approach, provided a basis 

for discussion with users and indicated clear benefits from such a solution. 

2. Background and Related Work 
Quality assurance for statistical data has a long-standing tradition. Accordingly, there is a wide 

range of indicators used to measure and quantify data quality under various aspects (Sidi, et 

al., 2012). Metrics to indicate specifically how well datasets can be integrated, however, are 

sparse. The overview of quality indicators for the GSBPM (United Nations Economic 

Commission for Europe, 2017) refers to the linkage rate as one “very important measure of the 

quality” for linked or integrated datasets. However, the report also explicitly mentions that 

further work needs to be done to develop indicators for describing the accuracy and reliability 

of linkage variables. Other sources develop concepts similar to the linkage rate but refer to it 

with different terminology like “coverage” or “support” (Explorium, 2023). We will specify and 

formalise key metrics for our approach in Section 3. 



 

 

 

  

The basis for our metadata-driven approach is a rich semantic ontology, which is specified 

using the SMCube information model (European Central Bank, 2024), also underlying the 

Single Data Dictionary (SDD) and the Banks Integrated Reporting Dictionary BIRD (European 

Central Bank, 2024). This model allows for obtaining detailed structural and semantic 

information about several kinds of datasets (aggregated, granular, template-based). Using 

structural information for guiding users on diverse, potentially distributed, and semi-structured 

data has been analysed in various domains. Data guides have been found to provide accurate 

schema descriptions that can support users in browsing and exploring datasets (Goldman & 

Widom, 1997). The method of capturing links between clusters of the same semantic nature 

and to indicate possible linkage and queries is inspired by work on Linked Open Data (Konrath, 

Gottron, Staab, & Scherp, 2012). Measuring or estimating distributions of how well subsets of 

data can be interlinked can provide valuable insights for data exploration and can be achieved 

efficiently and with relatively high precision (Gottron & Gottron, 2014). 

3. Metrics to Assess the Fitness for Integration 
To provide our users with the relevant information, we look primarily at three different metrics: 

integrability, linkage rate and weighted linkage rate. As existing literature does not agree on 

terminology and does not provide precise and harmonised definitions, we formalise the metrics 

described in this paper. 

From a notation point of view, we use 𝐴𝐴 and 𝐵𝐵 to denote datasets of tabular form with 

different attributes. We use 𝐴𝐴. 𝑧𝑧 to refer to attribute 𝑧𝑧 in dataset 𝐴𝐴. With |𝐴𝐴. 𝑧𝑧| we denote the 

cardinality of 𝑧𝑧, i.e. the number of distinct values that are observed for 𝑧𝑧. An aggregate function 

𝑓𝑓 applied to the values of an attribute (e.g. computing the sum or mean value) is described by 

𝑓𝑓(𝐴𝐴. 𝑧𝑧). With 𝐴𝐴 ⋈𝑧𝑧 𝐵𝐵 we denote the inner join between 𝐴𝐴 and 𝐵𝐵 on a common attribute 𝑧𝑧. 

Whenever the join attribute is obvious from the context we will simply write 𝐴𝐴 ⋈ 𝐵𝐵. Furthermore, 

we allow for formulating constraints 𝐴𝐴|𝑧𝑧=𝛼𝛼 to indicate all elements in 𝐴𝐴 where attribute 𝑧𝑧 has a 

value equal to 𝛼𝛼. All notations can be combined in an intuitive way, e.g. 𝑓𝑓�((𝐴𝐴 ⋈𝑧𝑧 𝐵𝐵)|𝑥𝑥=𝛼𝛼).𝑦𝑦�  

describing an aggregation function 𝑓𝑓 applied to attribute 𝑦𝑦 on the inner join of datasets 𝐴𝐴 and 

𝐵𝐵 which has been constrained to elements, where attribute 𝑥𝑥 has a value equal to 𝛼𝛼. 

Furthermore, we use some specific letters to mark attributes of particular types. We use 𝑖𝑖 

to denote identifiers, which can be used to (uniquely) identify elements in a dataset. Identifiers 

typically serve as primary or foreign keys in data and are natural candidates for computing 

joins. Examples for identifiers are legal entity identifiers, transaction identifiers or technical 

identifiers. An attribute 𝑡𝑡 indicates a time dimension, e.g. reference periods or validity ranges 

for observations. Time needs to be considered for a semantically correct integration of 



 

 

 

  

observations, potentially requiring a conversion of time values to facilitate matching. A 

stratification attribute 𝑠𝑠 provides a natural source for constraining a dataset to subgroups of 

observations or elements and can serve as basis for comparing how well subsets of the data 

can be integrated. Examples are geographic regions, economic sectors, or types of financial 

instruments. Finally, 𝑢𝑢 indicates a unit of measurement which provides the basis for 

aggregating information. Units of measurements can be identifiers used to count unique 

elements, but also numeric attributes can indicate a measure, e.g. outstanding nominal amount 

for loans or the number of employees for a legal entity. Please note, that a structured dataset 

may be composed of more than one table, containing more than one type of identifier, time 

dimensions, stratification attributes or units of measurement. Based on these formal notations 

and definitions, we define the following metrics we use for assessing the fitness for integration: 

Integrability 𝐼𝐼(𝐴𝐴,𝐵𝐵): Indicates if two datasets can be integrated at all. Integrability is a 

binary metric with a value of 1 if 𝐴𝐴 and 𝐵𝐵 share a common identifier suitable for linking and 

integrating the data. Vice versa, 𝐼𝐼(𝐴𝐴,𝐵𝐵) = 0 if no such identifier is available. Integrability is 

obviously symmetric, i.e. 𝐼𝐼(𝐴𝐴,𝐵𝐵) = 𝐼𝐼(𝐵𝐵,𝐴𝐴). Note, that time dimensions are not considered for 

integrability. While time might play an important role in a semantically correct integration, it is 

not a precondition for the technical ability to integrate data. 

Linkage rate 𝐿𝐿𝑖𝑖(𝐴𝐴,𝐵𝐵): Let 𝐴𝐴 and 𝐵𝐵 be integrable on identifier 𝑖𝑖, then the linkage rate is 

defined as the ratio of identifier values present in 𝐴𝐴 that can also be found in 𝐵𝐵. Formally we 

define 𝐿𝐿𝑖𝑖(𝐴𝐴,𝐵𝐵) = |(𝐴𝐴⋈𝐵𝐵).𝑖𝑖|
|𝐴𝐴.𝑖𝑖|

 with values in the interval [0,1]. Note, that the linkage rate can easily 

be computed on a constrained subset, e.g. using a stratification attribute 𝑠𝑠 to select a subgroup 

of elements. Due to the deliberate choice of the normalisation factor being based on only one 

of the two dataset sizes, this definition of linkage rate is asymmetric and in general we may 

expect to observe 𝐿𝐿𝑖𝑖(𝐴𝐴,𝐵𝐵) ≠ 𝐿𝐿𝑖𝑖(𝐵𝐵,𝐴𝐴). 

Weighted linkage rate 𝐿𝐿𝑢𝑢,𝑓𝑓(𝐴𝐴,𝐵𝐵): For an attribute 𝑢𝑢 indicating a measurable unit and an 

aggregation function 𝑓𝑓, we define the weighted linkage rate as 𝐿𝐿𝑢𝑢,𝑓𝑓(𝐴𝐴,𝐵𝐵) = 𝑓𝑓�(𝐴𝐴⋈𝐵𝐵).𝑢𝑢�
𝑓𝑓(𝐴𝐴.𝑢𝑢) . This 

provides a weighted view of the linkage rate, e.g. reflecting linkage according to market values, 

outstanding nominal amount etc. 

4. Approach 
Our approach is based on four steps: (1) retrieving relevant metadata information, (2) 

determining integrability by inferring suitable dimensions for integrating, (3) retrieving actual 

data to compute the linkage rate quality metrics and (4) visualising the precomputed metrics. 

In the following we will provide further details for each of these steps. 



 

 

 

  

4.1 Retrieving Metadata 
The entire process is designed to be metadata-driven. We start with retrieving metadata from 

a common repository covering a wide range of datasets available in the institution: the ECBs 

SDD, based on the SMCube metadata (information) model. The SDD covers different aspects 

of structural metadata, common code lists, technical metadata, and business metadata. 

Structural metadata is of particular relevance for us, as it describes tables and their 

attributes. Moreover, the SDD captures the semantics (meanings) of the attributes. This is a 

key information to identify common identifiers and time dimensions for integrating data, for 

detecting stratification attributes and units of measurements. Stratification attributes with a 

hierarchically organised code-list offer themselves additionally for aggregation at different 

levels and depths of the taxonomy. Furthermore, the structural metadata also gives insights 

into definitions of time and validity ranges, which are crucial for a harmonised and correct 

integration of data with a historicity component. Technical metadata provides insights into 

where data is physically stored and how it can be accessed. Business metadata provides 

additional context and descriptions of the datasets. 

To ensure scalability and to avoid an excessive combination of all possible attributes, we 

used a central configuration setup to denote relevant concepts which represent identifiers, time 

dimensions, stratification attributes and measurements units. In theory, using self-descriptive 

metadata, e.g. including meta-metadata, would allow for embedding such information in the 

metadata system and facilitate further automation. For the sake of our prototype, we did not 

investigate establishing such a bootstrapping setup. 

4.2 Inferencing Common Identifiers and Determining Integrability 
The structure of datasets and their attributes serves as basis for determining integrability. 

Given the semantic nature of the metadata, we can be sure to identify attributes with the same 

type of content and that equivalent values have the same meaning. By computing an inverted 

index (Baeza-Yates & Ribeiro-Neto, 1999) to map semantically equivalent identifiers to dataset 

attributes and corresponding datasets, we can easily infer which datasets can be integrated 

based on common identifiers. This essentially provides the integrability indictors 𝐼𝐼(𝐴𝐴,𝐵𝐵) for all 

pairs of datasets 𝐴𝐴 and 𝐵𝐵. 

4.3 Retrieval of Data to Compute Quality Metrics 
Integrability provides the basis for retrieving and joining data from various datasets. At this 

point we leverage information on time attributes to ensure correct integration along the time 

dimensions. Bringing together the data allows for further determining cardinality and other 



 

 

 

  

types of weighted aggregates which provide the basis for computing our linkage rate metrics 

(i.e. expressing how linkable are two datasets). The stratification attributes provide a vector for 

semantic grouping and selection of subgroups of elements and observations. The attributes 

identified as units of measurement provide the values for weighted aggregation (e.g. by 

counting, summing or averaging). This directly gives all relevant information to compute 

linkage rates and weighted linkage rates. 

4.4 Deliver Metrics via an Interactive Dashboard 
Once the metrics have been computed on all subgroups and on a global level, the results are 

stored with clear information on what datasets, tables, attributes, aggregates and reference 

periods are considered. Operating on pre-computed metrics has two distinct advantages. First 

of all time efficiency: pre-computed values do not need to rely on complex live calculations 

involving joins of potentially large and distributed tables. Instead, the values can be retrieved 

and displayed with hardly any computational overhead. Secondly, access rights: there is no 

need for the visualisation of the output component to have access to the underlying (and 

potentially confidential) granular information. In this way we can simplify the access rights 

requirements for users to a permission to see aggregated and high-level integration metrics. 

5. Implementation of a Prototype 
To demonstrate the feasibility of our approach and test the metrics with users we implemented 

a prototype. The implementation leveraged available platforms to facilitate a scalable solution. 

5.1 Processing 
For the processing component of the solution, we used Python which retrieves metadata 

information on datasets via the SDD API interface. This provided us with the semantic 

representation of attributes, allowing us to identify common dimensions. For the purpose of the 

prototype we defined a range of relevant attributes such as identifiers, measures, stratification 

or time attributes which are suitable for the link, in a configuration file. The inverted index to 

compute intersections of identifier attributes and datasets was implemented in-memory. Any 

index entry referring to more than one dataset indicated integrability for those datasets.  

Alignments along time dimensions required to harmonise formats and suitable points for 

connecting datasets. Based on the availability of data we chose monthly or quarterly 

breakdowns. Master data on legal entities is defined over validity periods (e.g. the address of 

an entity being valid from 7. July 2008 until 23. September 2012). Such time periods needed 

to be checked for intersection with the reference periods to ensure correct integration. 



 

 

 

  

Subsequently we constructed SQL queries to join tables based on common identifiers and 

time dimensions. The count and aggregation information needed for linkage rate and weighted 

linkage rate as well as any constraints formulations to select subgroups of elements based on 

stratification attribute values are directly translated to SQL elements in the queries. 

5.2 Storage and Data Handling 
Eventually, all pre-computed metrics were stored in a dedicated, Hadoop based database to 

serve as background for generating the visualisation dashboard. Each measurement for a 

metric is clearly and uniquely identified by: (a) type of the computed metric, i.e. integrability, 

linkage rate or weighted linkage rate, (b) integrated datasets or tables, including the identifiers 

used for integration, (c) time dimension used for integration and relevant reference periods for 

which the metrics have been computed, e.g. December 2022, (d) stratification value used to 

constrain the data to a subset, and the observed value used for the constraint, e.g. Portugal 

as a specific country, (e) measurable unit and aggregation function used for the weighted 

linkage rates and (f) actual value of the metric, e.g. a weighted linkage rate of 0.826. 

5.3 Visualisation 
The visualisation component was implemented as an RShiny dashboard. The dashboard 

connects with the backend database to retrieve and display the pre-computed metrics. The 

only business logic implemented in the dashboard is related to browsing, selecting and 

visualising information as requested by the user. 

The default view provides an entry point to the investigation of all datasets. To this end, it 

presents the binary integrability metric using a graph visualisation. Each dataset is represented 

as a node in the graph, with edges connecting those datasets that can be integrated. Context 

information for the edges denotes which identifiers have been used to perform the integration. 

A second high-level visualisation is based on a heat-map to indicate the linkage rate on a 

global dataset level (i.e. without any breakdowns using the stratification information). 

Once the user selects an individual dataset, the dashboard offers general information on 

the specific data set. This includes business metadata and descriptions as well as indicators 

on volume, composition, and structure of the dataset. Furthermore, based on the integrability, 

the user can select a secondary dataset that can be used for integration. This selection helps 

in retrieving all pre-computed linkage and weighted linkage rates involving both datasets. In 

general, indicators are presented in a tabular format and in aggregated form as bar-plots. 

Additionally, geographical information (e.g. based on a stratification by geographic regions) is 



 

 

 

  

visualised as map. If a time dimension is used, the evolution of linkage rate over the last 12 

month is visualised as time series. 

An additional feature is the provision of the SQL queries used for integration and that are 

underlying the provided metrics. In this way users can start off further analysis by building on 

and extending the pre-defined integration (assuming they have access to the original data). 

6. Findings 
The prototype setup demonstrated that it is feasible to implement an automated and metadata-

driven dashboard that provides insights on the fitness for integration of various granular 

datasets. The metadata assessment, the computation and storage of metrics and the 

visualisation component demonstrate furthermore, that such a loosely coupled approach is 

easier to maintain, more performant and more stable for end users. 

Interviews with test users provided several insights. Most important was the perceived 

benefit of the overview generated by the dashboard. Users confirmed the value of the insights 

based on integrability, linkage rate and weighted linkage rate metrics. This was valid for high-

level overviews as well as for more detailed breakdowns on subsets of stratified data. An 

additional benefit was seen in the different access rights modality for the dashboard. As no 

detailed data is presented, but only high-level quality metrics, users were not required to have 

access to the original data. Overall, the dashboard provides a fast alternative and explorative 

approach to assess if a deeper analysis based on integrated data from different datasets looks 

promising and if it is worth to invest more time and resources in a fully-fledged analysis. 

7. Summary and Conclusions 
In this paper we presented an automated and metadata-driven dashboard to assess the fitness 

for integration of granular datasets at the ECB. The approach is leveraging automatic 

inferencing on rich metadata of the ECB’s Single Data Dictionary to detect which datasets can 

be integrated, infer a suitable semantic and technical integration, translate this into SQL 

queries to feed metrics of relevance and interest for users. A prototype dashboard has been 

implemented and tested with users to confirm the feasibility and added value of the approach. 

In future work, we plan to assess integration of additional datasets, investigate options for 

leveraging further metadata sources and how to establish links with data sources using other, 

standardised metadata models. A further extension would be to include experimental 

approaches for interlinking datasets, e.g. based on fuzzy matching. 
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