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Abstract

The Gross Domestic Product (GDP) is one of the most well-established, well-known and relevant
official statistical metrics. The exploration of the components that mainly affect the evolvement of
GDP, aiming at concluding to the prediction of GDP, is placed high at the statistical and
macroeconomic scientific agenda. Given quarterly time series measurements of GDP and its
components, the objective is to predict GDP given the past data up to the current quarter. For many
components and long horizon of past values, this is a high-dimensional regression problem, and
dimension reduction has to be called in. There are different approaches in the literature for variable
selection, such as the least absolute shrinkage and selection operator (LASSO), or variable
extraction, such as the principal component regression (PCR). Here, a new prediction model is
proposed applying a stepwise forward selection algorithm using as selection criterion the partial
correlation for evaluating the conditional lag Granger causality of any of the candidate components
(including past GDP) to the next quarter GDP. The termination criterion is a properly designed
parametric hypothesis test, ensuring a balance between model complexity and predictive power. A
simulation study is conducted to assess the reliability and consistency of the algorithm and compare
it to other approaches, such as LASSO and PCR. The applicability of the proposed algorithm is
demonstrated using time series data of the Greek GDP and its components, compiled by ELSTAT.
By applying the algorithm to this dataset, the variables that most influence GDP fluctuations are
identified. The selected variables are then used to form a prediction model, contributing to accurate
predictions. This study is carried out in the framework of the EMOS programme of the Aristotle
University of Thessaloniki in Greece.

Keywords: Gross Domestic Product, prediction model, multivariate time series, variable selection,
partial correlation

1. Introduction
Most economic systems describe interactions among various economic indicators.

Multivariate time series analysis using vector autoregressive (VAR) models investigates these
interactions for accurate predictions. However, when the multivariate time series has high dimension
(many observed variables), dimension reduction techniques are required such as variable extraction
and variable selection (Siggiridou and Kugiumtzis, 2016; Dallakyan et al., 2022). Variable selection
aims to identify the optimal subset of the observed variables to predict the response variable. Here,

we propose a new variable selection algorithm for linear models making use of standard statistical



tools, i.e., the partial correlation for measuring interaction and parametric hypothesis test for its
significance. This method is applied to Greek GDP data and its components data, compiled by the
Hellenic Statistical Authority (ELSTAT) and available on their official website. We focus on the
components of the production and expenditure approaches, totaling 20 components. A detailed
description is provided in Appendix A. Using a VAR(10) model on 21 variables, including lag values

of GDP, we check relationships across 10 lags with final objective to predict GDP.

The paper is structured as follows. In Section 2 the theoretical framework is briefly given. In
Section 3 the proposed method is presented, and in Section 4 alternative models of dimension
reduction are discussed. The simulation study and the application to Greek GDP data are described

and the results are discussed in Section 5. The paper concludes in Section 6 with final remarks.

2. Theoretical Framework
Correlation analysis quantifies relationships between variables with Pearson correlation

coefficient (denoted r) capturing linear correlations. For continuous variables X and Y and a bivariate

cov(X,Y)

sample of size N it is defined as r(X,Y) = e ——

were cov(X,Y) denotes the sample covariance

and var(X) the sample variance of X. A parametric significance test for r is designed using the Fisher’'s

transform so that the test statistic 7 has asymptotically normal null distribution with mean 0 and
variance Ni_g (Choi et al., 2020). For time series observations of the two variables, {X;,Y;},t =1,..,N,

the r(X;, Y:47) is the cross-correlation at lag .

The patrtial correlation coefficient evaluates the linear relationship between two variables X,

and X,, while controlling for other variables Z = {Z,, ..., Z,;}. It is calculated by regressing X; and X,
on Z obtaining residuals uy, and uy,. The partial correlation is then r(XY|Z):; = corr(qu,uXZ) =
cov(uxl,uxz)

\/ Var(uX 1)\/ Var(uxz)

distribution with mean 0 and variance

(Li et al., 2017). Fisher's transformation is also used here to form normal null

N_:n_3, where m is the number of variables in vector Z (Choi et

al., 2020; Williams & Rast, 2020).

3. Proposed method
Let {XU, ...,XK,t}, t =1,..,N, be a K-dimensional multivariate time series of length N. The VAR

model of order p for the response variable X;, represents each variable as a linear function of past
values of all K variables up to lag p and a white noise error term (Litkepohl 2005). For large K or p,
the VAR(p) model may contain redundant or irrelevant terms and if N is short their coefficients may
erroneously be estimated as significant. To render a sparse VAR (error terms much less than Kp), a
stepwise variable selection scheme based on the partial correlation coefficient is proposed here,

aiming to enhance the prediction accuracy.



Initially, we create an extended dataset of Kp lag variables up to order p from the original K
variables: W = {Xy 1, ..., Xk t-1, X142, - Xk t—p} = {W1, .., Wg.p}. Suppose the response variable is
y = X;. (or any of the K variables). Starting with an empty vector w, lag variables of W are
progressively added based on their correlation with y. The correlation is quantified with the correlation
coefficient (cross-correlation) r(y,w) in the first step and partial correlation r(y,w|w) for the
subsequent steps, where w is any of the Kp candidate lag variables. The lag variable maximizing the
absolute value of the correlation is selected to be added to w at each step. For the termination criterion
checked at each completed step, a proper parametric hypothesis test is designed. To find the
distribution of the maximum absolute correlation, we first assume the normal distribution of the Fisher-
transformed (partial) correlation coefficients . Denoting M the maximum of n < Kp absolute (partial)
correlation coefficients and assuming them independent, , its distribution is given by (Choi et al., 2020;
Coles, 2001):

PIM<z]|=P[r,<z..,1m<z|=P[rp<z] .-Plnp, <z]= {QD (—)} .

Therefore, the critical value z,_, for a significance level a is z;_, = ® (V1 —a) s, where
®(+) is the cumulative density function of the standard normal distribution and s is the standard
deviation of the transformed correlation coefficients. At each but the first two steps, a backward
revision check is applied (if any of the existing terms in w has to be dropped in view of the selected
lag variable) to ensure the selected variables significantly affect the response variable (Derksen &
Keselman, 1992).

A pseudo-code of the algorithm is given in Figure 5 in Appendix B.

The steps of the algorithm are illustrated below for the following VAR(2) stationary system on

three variables:

X1t =0439X; ;1 +0,294X, ;1 + 0,329X3,_,+&; ¢
Xp0=10293X1; 5+ 0377X5, 1 +0,316X5,_1+&5,
X3:=0,191X;, 1 +0,485X,¢ 1 +0,362X3, 1 — 0,179X3,_,+&3,,

where ¢; ., i = 1,2,3, is uncorrelated white noise. The response variable is y := X, ;, and the generated
time series has length N = 400. In the first step, the cross-correlation between y and each candidate
lag variable from the set W = {X; ;_1, X5, 1, ..., X3,—2} = {wy, ..., ws} is computed and after applying
Fisher's transformation (r¢), the lag variable with the highest absolute correlation is selected and
tested for significance (coefficient is compared to the respective critical value z;,_, for a = 0.05). This
selected variable is added to the initially empty w. Partial correlations are then calculated sequentially,

following the same steps until no further lag variables of statistically significant maximum partial



correlation are found. Backward revision at each step > 2 ensures optimal variable selection. The
procedure is called PartialCor and it is shown analytically in Figure 1 and shows that the algorithm

has correctly selected the variables that most affect the response variable: w = {w;,wg,w,} =

{Xl,t—l'X3,t—21X2,t—1}-
Figure 1: Steps of the proposed algorithm applied to a VAR(2) system.

re(yiwy) = 1,111 re(yiwg) = 1,055 re(yiwg) = 0,853 rely:w,) = 0,888 re(y:ws) = 1,008 re(viwg) = 1,062
* I _o=0120< l,lll=niax{|r:r|], wy =wy, W [wowy |
(i wy |w) = 0,586 re(yiwg|w) = 0,327 T (o wy|w) = 0,181 r(yiws|w) = 0378 T {viwg|w) = 0,593

; z_q = 0,117 < 0,593 = max(|rs|]. wi=w,, we [w,wi]
1 (yiwz|w) = 0,337 7y (v wz|w) = 0,030 re(y wy |w) = 0,013 (3 ws[w) = 0,200

l 5 = 0112 = 0337 = max(|rf|}. wy =wy, W [wowg)]

Backward revision:
[r(yswi|ws, wi)| = 0,507 > 0,325 = |r(y; wi |wi, wi)] = wi not removed

[r(yswa|wi, wa)| = 0,335 > 0,325 = |r(y; wi |wi, wi)]l - wi not removed

: 8

ey wg|w) = 0,040 (3 wy|w) = 0,028 | 7 (y:ws|w) = 0,095

l z-g = 0,107 = 0,095 = max(|rf|)

STOP. w={wi wiws}={w,wsw:]

4. Other methods
This new method is compared with other dimension reduction techniques: 1) LASSO selects

variables by shrinking coefficients to zero through a penalty term, with the lambda parameter chosen
via five-fold cross-validation (Tibshirani, 1996). 2) The modified Backward in Time Selection (mBTS)
builds a dynamic regression model by selecting the most relevant lagged variables to the response
starting from the most current lag and going backwards in time (Siggiridou & Kugiumtzis, 2016). 3)
PCR is a variable extraction technique that forms the K principal components to be linear
combinations of the K original variables ranked under uncorrelatedness and maximum variance
assumption, with the number of the first principal components chosen to explain 95% variance of the
original data (Massy, 1965). 4) Additionally, the simple autoregressive AR(p) model is applied (Wei,
1990).

5. Results
In this section, we present results for both the simulation study and the application to real data.

5.1 Simulation study
5.1.1 Statistical Evaluation and Setup

The efficacy of the proposed method is evaluated through simulation assessing the following
five metrics. Sensitivity measures the proportion of correctly identified relevant variables, specificity

measures the correctly excluded irrelevant variables and precision measures the accuracy of the



algorithm’s choices. Matthews Correlation Coefficient (MCC) ranging from -1 to +1, indicates binary
classification performance, while F-score is the harmonic mean of precision and sensitivity (Chicco &
Jurman, 2020). The predictive capability is tested with a 70-30% split of the synthetic data into training

and test sets and evaluated by the adjusted R?, denoted R.ﬁdj. Additionally, the robustness of the

method’s parametric hypothesis test is compared with a resampling significance test where the

resampled time series are derived by random time-shifting.

The simulation systems VAR stationary stochastic processes on 21 variables of order 10,
formed on the basis of the Greek GDP time series as follows. First, the proposed algorithm is applied
to the dataset three times at a varying significance level a, to attain VAR models of varying sparsity.
Each of the three VAR models is then used as the generating stochastic process and 100 realizations

are generated. All the subsequent hypothesis tests maintain a significance level of a = 0.05.

5.1.2 System 1: Very Sparse

Firstly, to derive a very sparse VAR process significance level is set to a = 0.05 (the system
equations are given in Appendix C.1). We assess the termination criteria in PartialCor with the
parametric test versus the resampling test. For long time series, both criteria perform similarly well in
selecting the true lag variables, as shown in Figure 2a and\ excluding irrelevant variables correctly,
as shown in Figure 2b (the results on all metrics are given in Appendix C.1).

Figure 2: Sensitivity in (a) and Specificity in (b) vs time series length N for the termination criterion using the
parametric and resampling significance test as given in the legend.
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5.1.3 System 2: Sparse

Increasing the significance level to a = 0.25 in our procedure, the generating stochastic
process contain more terms (system equations are given in Appendix C.2). We compare the proposed
algorithm with LASSO and mBTS for variable selection, in two stages: 'VL’, evaluating the ability to
select both the correct variables and their appropriate lags, and ‘V’, assessing the selection of the
appropriate variables alone regardless of the lag. Figure 3a shows high sensitivity for PartialCor and
LASSO and Figure3b shows high specificity for PartialCor for both stages, whereas LASSO and
mBTS perform poorly when assessing stage ‘V’ selection. Table 4 in Appendix C.2 presents results

for all five metrics.



Figure 3: Sensitivity in (a) and Specificity in (b) vs N for the variable selection methods PartialCor, LASSO and
mBTS in the two stages VL and L as denoted in the legend.
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5.1.4 System 3: Dense

For significance level a = 0.40 we obtain the largest VAR system (system equations are given
in Appendix C.2). We compare the performance of PartialCor in terms of Rgdj with this of LASSO,
mBTS, PCR and AR(10). As shown in Figure 4, regardless of N, LASSO and PartialCor exhibit nearly
identical predictive power. Detailed results on the predictive performance for each of the 21 response

variables are given in Table 5 in Appendix C.3.

Figure 4: Average RZ,; vs time series length N over 100 realizations for five methods listed in the legend
considering X1t as the response variable
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5.2 Greek GDP data

We aim to predict quarterly GDP for the next quarter using historical data, including GDP past
values from a sparse VAR(10) model. The proposed algorithm PatialCor identified two significant lag
variables, ‘GDP¢¢’ and ‘subsidiesi.s’. Compared to LASSO and mBTS, our algorithm selects fewer
optimal lag variables. LASSO method includes these two lag variables and 27 more, while mBTS
includes ‘GDP:.1’, a different lag for the other and 25 more, only 5 of these common with LASSO (the
exact subsets are given in Table 6 in Appendix D.1). We then performed linear regression with the
selected lag variables making both in-sample and five-fold cross-validation prediction. For this, we

use Rgd]- and also the normalized root mean square error (NRMSE). LASSO performs best in in-

sample predictions as it achieves the smallest NRMSE, while PartialCor scores better in NRMSE than

PCR and AR(10) methods. Cross-validation results show that PartialCor outperforms the other four



methods giving the highest Rgdj and smallest NRMSE being strongly statistically significant using the
Diebold Mariano test (Chen et al., 2014). Actually this test found no statistical difference of PartialCor
only to AR(10) in in-sample prediction, as shown in Table 1. Time comparison shows similar
performance between the variable selection methods, with PartialCor being slightly faster.

Table 1: NRMSE, Rfmj and execution time in seconds for GDP prediction from 1995 Q1 to 2023 Q4. The (*)
denotes no statistical difference in NRMSE from PartialCor using Diebold Mariano test.

Prediction Metric PartialCor mBTS LASSO PCR AR(10)
NRMSE 0,143 0,114 0,098 0,228 0,152*

In-Sample R4 0,979 0,982 0,986 0,945 0,974
Time 3,803 5,677 5,079 0,007 0,001

NRMSE 0,192 0,820 0,276 0,626 0,254

Cross-Validation Ry 0,962 0,314 0,923 0,601 0,934
Time 3,811 5,687 5,088 0,053 0,008

The reference year for GDP and its components was updated to 2015, impacting data from
2010 to 2023. While the initial dataset starts from 1995, revisions from 2010 onwards reflect the new
reference year of 2015. Therefore, we repeat the predictions limiting the dataset to this period. The
PartialCor identifies ‘GDP¢1" as significant variable, similar to LASSO and mBTS. While LASSO
selects 14 variables, mBTS finds 46, neither of them common with these of LASSO (the subsets of
lag variables are given in Table 7 in Appendix D.2).

Table 2: NRMSE, RZ,;; and execution time in seconds for GDP prediction from 2010 Q1 to 2023 Q4 (revised
time series). The (*) denotes no statistical difference in NRMSE from PartialCor using Diebold Mariano test.

Prediction Metric PartialCor mBTS LASSO PCR AR(10)
NRMSE 0,559 0,000 0,246* 0,459* 0,548*
In-Sample Rgdj 0,665 1,000 0,907 0,706 0,616
Time 6,484 7,445 6,955 0,209 0,006
NRMSE 0,674 5,372 0,666* 0,767* 0,838
Cross-Validation Rgdj 0,526 -29,168 0,537 0,385 0,266
Time 6,688 8,026 6,286 0,019 0,008

In Table 2, in-sample predictions show mBTS are excellent but due to overfitting (many lag
variables) as it fails in cross-validation. Other methods demonstrate decreased performance due to
fewer observations. Regarding PartialCor, even though it obtains the worst results in the in-sample
predictions, the Diebold-Mariano test showed that it has no statistical difference from all other
methods except from mBTS. In cross-validation there is also no statistical difference with all models
apart from mBTS.

6. Conclusions
In this work we introduced a new method for GDP prediction using Ganger causality and partial

correlation-based lag variable selection called PartialCor. This approach enhances multivariate time



series management and forecasting by finding direct linear relationships between lag variables and
response. When the PartialCor was applied to Greek GDP data and its components it identified two
variables as optimal, ‘GDP’ for the previous quarter and ‘subsidies’ of 6 quarters before. Restricting
data to revised quarters highlighted ‘GDP1’ as the sole significant variable. Comparative analysis,
including simulations and real-word application to Greek GDP data, highlights that the proposed
algorithm PartialCor is a simple, fast and accurate method for sparse modeling and prediction,
positioning it as a compelling choice among other more involved methods. Explicitly, this method
includes a reliable parametric hypothesis-based termination criterion and offers straightforward

interpretation, effective and consistent performance in variable selection as well as it is time efficient.
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Appendix
Appendix A: Variables Description

National Accounts, compiled by Hellenic Statistical Authority (ELSTAT) following the
European System of Accounts ESA 2010, provide a comprehensive description of a country’s
economy Gross Domestic Product (GDP) being a key indicator, represents total value of final goods
and services produced, without intermediate consumption. The estimations we use are chain link
volume data, seasonally adjusted based on JDemetra+ software in accordance with the Greek diary.
Measurements recorded start from the first quarter of 1995 up to the most recent quarter. Listed below

are the components of production and expenditure approaches that will be used to predict GDP.

From production approach mainly contains classes of economic activities, which European

Community (NACE Rev.2) in ten cumulative sections, there are the following components.

= sectionA. It includes agricultural, forestry and fishing occupations.

= sectionBCDE. This one contains the extraction of natural minerals as well as activities aimed at
preparing the raw materials so that they can be sold on the market. Additionally, it includes
manufacturing and the operation of business responsible for the supply of electricity, natural gas,
steam and air conditioning. Finally, activities related to collection, treatment and supply of water
and treatment process of all types of waste are also included in this component.

» sectionF. It encompasses construction activities such as, construction of buildings or construction
of civil engineering projects and their repair.

» sectionGHI. This component includes retail and wholesale trade. It also includes the trade, repair
and washing of vehicles and motorcycles, activities of transporting goods and people through all
kinds of roads. Finally, it contains the provision of short-term accommodation services and
catering services for immediate consumption.

» sectiond. This section encompasses various media, information and communication technologies
as well as all the activities of production and distribution of information products.

= sectionK. It includes financial services and insurance activities.

= sectionL. Activities related to the management of real estate belong to this component.

= sectionMN. It concerns activities of professional, scientific and technical content as well as
activities that support various business pursuits.

= sectionOPQ. This component contains government-related and compulsory social security
activities. Also, all education stages, activities related to human health protection issues, provided
by professionals, and social welfare issues are included.

» sectionRSTU. Related to entertainment and arts. Additionally, it contains activities related to the
repair of household goods and services that are not classified in any other category.

= tfaxes. Taxes on products.

» subsidies. Subsidies on products.



From expenditure approach, there are the following components.

» households NPISH. It refers to expenditure of households and NPISH (Non-profit institutions that
serve households), which are neither financed nor controlled by the state.

» GG. It contains General Government expenditure.

» fixed _gross_capital_formation. Gross fixed capital formation is the country’s investments in fixed
assets (i.e. physical assets with a lifespan of more than one year).

» gross_capital formation. It is the sum of gross fixed capital formation that was defined in the
previous component with the value of goods held as inventory by businesses.

= export_goods. Exports of goods.

= export_services. Exports of services.

= jmport_goods. Imports of goods.

» jmport_services. Imports of services.

Thus, 20 components are linked to GDP. More information can be found on the website of ELSTAT

(https://www.statistics.gr/) and the European Statistical Service (https://ec.europa.eu/eurostat).

Appendix B: Proposed Algorithm

Figure 5: Pseudo-code including the steps of the proposed algorithm PartialCor to find the optimal subset of
lag variables for prediction.

Algorithm 1: Stepwise variable selection algorithm using partial correlation Function 1: backward revision

W= {Xl‘t—l’ 'Xk-t—l_' Xye—20 - 'Xk‘t—p} = {wl' W2, - M'T"'P.} > %Y, W, max,, % were st within Algorithm 1
> y:= X,% response variable : p % order : a % level of significance Sw -0
remove

— 0, - . " o
W= ‘(2) /6 vector to a:)ccm_mnoclate selected variables > for i = 1: (length(w) - 1) % without last addition in w
>fori= 1 (p-k) % fU_Sf step > removed gy, = Wi
> corr(i) = correlation(y,w;) > w, = w\removed, ..t
>  fisher,,,.(i) = Fisher(corr(i)) > partial_corr(i) = partial_correlation(y, removed,piapie W)
> end for > if abs(partial_corr(i)) < max,,
>max, = max (abs(fisherw,_r(f))) Z Wremove = [Wremove » TEMOVEdygpigple]
>if max, > z,_, > else
> W — [w‘ ar'gmax(maxc)] > continue

> else > endif
>end for
> returnw e {v\w
> - - remove
endif >return w

> condition = true

> while condition % second step until end

> forj=1:(p-k)

> pcorr(j) = partial_correlation(y, w;|w)
> fisher, ...(j) = Fisher(pcorr(j))
> end for

> max,, = max(abs(fisher,c,.-(j)))
> condition = (max,, > 2;_,)
> if condition

> w « [w,argmax(max,.)]
> if length(w) = 3

> backward_revision(w)
> else

> continue

> endif
> else
> return w
>  endif
> end while
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Appendix C: Simulation Study Systems and Results

Appendix C.1: System 1: Very Sparse
A VAR(10) stationary process on 21 variables derived by applying the proposed algorithm PartialCor

in Greek GDP data while setting the significance level a = 0.05.

Xip=a11X10-1+ a12X13¢-6 + €1

Kot =a21X0¢-1 + €21

X3t =az1X3¢-1 +€3;

KXot = q1X4¢-1 + €41

KXt =0s51Xs5¢-1 +A52X4¢-4 + €51

KXot = a61X6t-1 T A62X12¢-4 T A6 3X2¢-10 T €6t

X7p=a71X7¢-1 €7z

Xgt = ag1Xpt-1+ a2 Xgr—1 +ag3Xgr—2 + €5t

KXoy = a9 Xor—1+ a92X13¢-6 1 €9¢

X10¢ = A101%10,6-1 T Q102X1,t-4 + A103X2,¢-9 + A104X4t-9 + A105X9 -9 + €10,
Xi1e = Q111 X111 T Q112X160-2 + Q113X40-0 + A114X170-10 + €11
KXiop = Q121X6t-1 + A122X120-1 + €12

X1z = @131 X130-1 + €13

KXiar = Q141X146-1 F Q1a2X150-1 + A143X5¢-7 + €144

K15t = Q1511561 T Q152X16t-2 T €15¢

Xiot = a161X16t-1 T €16t

Xi7¢ = Q171K16¢-1 T Q172X174-1 T €17

Xigt = 181X18¢-1 T Q182X18t-2 T €181t

Xior = Q191 X19¢-1 T €191

Xzot = A201X20t-1 + €201

Xo1t = 211 X21,6-1 + €21

Table 3: Mean and standard deviation (std) of five metrics: sensitivity, specificity, precision, MCC and f-score
over 100 realizations using parametric test and resampling test (with 100 replications) as termination criterion
in the proposed variable selection algorithm for various time series length N, for response variable X, ..

N Test Statistic | Sensitivity | Specificity | Precision MCC F-Score
arametric mean 0,720 0,999 0,830 0,761 0,751
116 P std 0,358 0,002 0,345 0,333 0,332
, mean 0,015 0,995 0,020 0,010 0,017
resampling
std 0,111 0,001 0,141 0,123 0,120
) mean 0,965 0,999 0,957 0,957 0,953
parametric
400 std 0,128 0,002 0,120 0,105 0,112
) mean 0,905 1,000 0,978 0,934 0,928
resampling
std 0,210 0,001 0,120 0,152 0,161
arametric mean 1,000 0,999 0,957 0,976 0,973
1000 P std 0,000 0,002 0,120 0,068 0,075
, mean 1,000 1,000 0,970 0,983 0,982
resampling
std 0,000 0,001 0,096 0,053 0,058




Appendix C.2: System 2: Sparse
As system 1 in Appendix C.1 but for « = 0.25.

X1t = 11 X10-1 + a12X15¢-1 + A13X131-6 + +e1¢

Xop = 31X 1+ az2X191-6 + €2t

X3p = a3 1X3¢1+e3;

Xap = Ag1X3p 1+ A42X41 1+ ay3Xgi-10 + €4t

X5t = a51X5-1 + A52X40-4+ €5¢

Xot = 61X -1+ A62X12t-4 + A63X2t—10 + €6

X7t =a71X7¢-1+ a72X50¢-2 + €7,

Xgt = ag1Xor- 1+ agoy Xgp—1 + ag3Xigr—1 +agaXgr—2 +eg;

Xor = A91Xgt_ 1+ AgpX12¢-3 + Ag3X13¢-6 + €9

X0t = A101X0,t-1 + A102X10,6-1 T A103X1,6-4 T A104X2t—0 + Q105X4 -0 + A106X0 -0 + €10t
X1, = a11X116-1 + @12X166—2 T A11,3X206-3 + A11,4X4 -0 + A115X106-0 + €11t
Xiop = 121 X6t-1 + Q122X120-1 + A123X30-2 + A124X11,6-3 + A125X4t-0 T €12
Xz = @131 X130-1 T X132X7¢-2 + Q133X14¢-10 T €13t

Xiar = A141X30-1 + Q1a2X14¢-1 + A1a3X150-1 + Q1aaXs5e 7 + €144

X5 = 151 X150-1 + 152X16¢—2 + A153X176-2 + €15¢

X6t = M161X16t-1 F Q162X11,6—2 T A163X2t-5 T €16t

X7 = @171 X150-1 + Q172X170-1 + 173X160-2 + A174X13¢-7 + A175Xg 10 T €17¢
Xigt = Q1g1X18¢-1 + A182X18¢—2 + €18¢

Xiot = A191X19-1 + €19

X0t = A201X20,6-1 T A202X13,6-9 + €20

Xo1,t = @211 X21,6-1 + A212X18t-6 T €21t

Table 4: Average sensitivity, specificity, precision, MCC and f-score over 100 realizations of system 2 and for
the methods Partial Cor, LASSO and mBTS, for various time series lengths N, considering X, ; as the
response variable.

N Method Stage | Sensitivity | Specificity | Precision MCC F-Score
Y, 0,940 0,605 0,352 0432 | 0482

LASSO VL 0,903 0,933 0,260 0,441 0,369

. Y, 0,763 0,988 0,908 0,801 0,808

116 | PartialCor |\, 0,747 0,999 0.875 | 079 | 0786
I Vv 0,590 0,493 0172 0,065 | 0256

VL 0,356 0,922 0,079 0134 | 0,123

Y, 0,987 0,616 0,346 0453 | 0,497

LASSO VL 0,987 0,938 0,244 0462 | 0376

. Y, 0,983 0,997 0,988 0982 | 0,983

400 | PartialCor |, 0,983 1,000 0,988 0984 | 0,983
I Y, 0416 0,662 0,185 0065 | 0,250

VL 0,346 0,960 0,134 0,191 0,186

Vv 1,000 0,594 0,348 0453 | 0,496

LASSO VL 1,000 0,934 0,243 0,461 0,372

. Y, 1,000 0,996 0,981 0988 | 0,989

1000 | Partial Cor |, 1,000 1,000 0,976 0987 | 0,986
TS Y, 0,380 0,645 0,159 0022 | 0,220

VL 0,326 0,957 0,115 0169 | 0,164




Appendix C.3: System 3: Dense
As system 1 in Appendix C.1 but for a« = 0.40..

Xip=a11X10-1+ A12X15¢-1 + 13X13¢-6 + et

Kot = a21X0¢-1 + A22X19¢-6 + €21

X3r =az1X3¢-1 +€3;

Kot = A41X3¢-1 + Ag2X401 + A43Xg-10 + €41

KXt =0s51Xs5¢-1 +A52X4¢- 4+ €5t

KXot = a61X6t-1 T A62X15¢-1 T A6 3X12¢-4 T A64X3¢-8 + As5X4t-9 + As5X15t-9 + €6t
X7p =a71X7¢-1 + 7252002 + €71

Xgt = ag1Xpt-1+ a2 Xgt-1 +ag3Xi9t-1 + agaXgr—2 + €g¢

KXo = a9nXor—1+ A9pXot—2 + Ag3Xipt-3+ A94Xi31-6 T AosXat-g+ AoeXi1-8 1 €o¢
K10t = Q10101+ A102X10t-1 + A103X0t-2 + A104X1t-1 + A105X4t-5 + A106X2t-9 + A107X4t-0 +
ay08Xot-9 + €10

Xi1e = Q111X116-1 T Q112X160-2 + A113X20,6-3 + A114X0¢-9 + A115X10t-9 + €11
KXiop = Q121X6t-1 + Q122X12¢-1 + Q123K3¢-2 + Q124KX116-3 + Q125Xa -0 T €12

X1z = @131 X130-1 + X132X7¢-2 + @133X140-10 T €13¢

Xiar = Q1418301+ Q142 X100-1 + Q143X150-1 + Q144 X5¢-7 + €144

Xis¢ = Q1511561 T Q152X16t-2 + A53X176-2 + €151

K16t = Q161X16,¢-1 T Q162X11t-2 T A163X2,t-5 T €16t

X174 = Q171K156-1 T Q172X170-1 + Q173X16t-2 + A174X13¢-7 + 175K -10 + €17
Xigt = Q181X18¢-1 T Q182X18t-2 T €181t

Xior = @191 X19,¢-1 + Q192X19t—2 + €19¢

Xzot = A201X20t-1 + A202X13t-9 + €201t

X21,t021,1X21,6-1 T A212X18¢-6 T €21,¢



Table 5: Average values of R;,; from predictions over 100 realizations for time series of
length 400 for five models considering each variable of the multivariate time series as the
response variable.

Response | PartialCor mBTS LASSO PCR AR
Xt 0,836 0,723 0,834 0,575 0,725
Xait 0,766 0,602 0,766 0,444 0,542
X3t 0,636 0,574 0,665 0,304 0,555
Xat 0,820 0,606 0,819 0,554 0,547
Xst 0,788 0,602 0,786 0,501 0,510
Xe.t 0,915 0,744 0,911 0,777 0,551
X7t 0,730 0,538 0,742 0,422 0,551
Xa,t 0,856 0,571 0,852 0,623 0,499
Xot 0,912 0,710 0,907 0,763 0,567
Xio,t 0,941 0,738 0,935 0,828 0,573
X1t 0,915 0,666 0,911 0,774 0,542
Xizt 0,914 0,714 0,912 0,779 0,553
Xiat 0,834 0,623 0,833 0,591 0,607
Xiat 0,851 0,724 0,847 0,621 0,595
Xist 0,878 0,623 0,876 0,690 0,596
Xie,t 0,862 0,614 0,860 0,661 0,520
X7t 0,901 0,672 0,897 0,734 0,574
Xia,t 0,769 0,496 0,776 0,493 0,464
Xigt 0,786 0,585 0,786 0,482 0,503
Xao.t 0,781 0,617 0,782 0,509 0,644
Xa1,t 0,755 0,541 0,755 0,471 0,530

Appendix D: Greek GDP Data Results

Appendix D.1: Greek GDP Data 1995 Q1 — 2023 Q4

Table 6: Optimal subsets of lag variables found by applying the variable selection methods LASSO and mBTS
on Greek GDP data and its components.

LASSO mBTS
GDP¢1 import_servicest.2 GDPt-1 sectionLt-1
sectionBCDE¢.1 sectionRSTUt3 GDPt.2 sectionLt.7
sectionFt.1 GGts GDPt3 sectionMNts
sectionGHl.1 sectionKt.4 GDP+w7 sectionOPQt.2
sectionKt-1 import_goodst4 sectionAt2 sectionRSTUts
sectionOPQt-1 sectiondts sectionAts Subsidiest.1
sectionRSTt1 sectionAts sectionBCDE:¢.1 Subsidiest.7
GGt1 Subsidiests sectionBCDE:2 GGts
import_goodst-1 Subsidiest.7 sectionBCDE¢3 gross_fixed_capital_formationt.s
import_servicest.1 sectionBCDE¢.s sectionFts gross_fixed_capital_formationt.o
sectionAt.2 Subsidiest-s sectionGHlt.3 export_goodst.2
sectionBCDE:2 sectionFt.g sectionGHly.s export_servicest.2
sectionOPQt.2 sectionKt10 sectionJt.7 export_servicest.1o
Subsidiest.2 sectionRSTUt10 sectionKt.4
import_goodst.2




Appendix D.2: Greek GDP Data 2010 Q1 — 2023 Q4

Table 7: Optimal subsets of lag variables found by applying the variable selection methods LASSO and mBTS
on Greek GDP data and its components.

LASSO mBTS
GDPt-1 GDPt.1 sectionGHl3
sectionLt.1 GDPt2 sectionGHls
gross_capital_formationt.2 GDPt3 sectiondts
gross_fixed_capital_formationt. GDPts sectiondts
import_goodst.2 GDPt7 sectiondtg
GGts GDPt.s sectionKt3
gross_capital_formationt.a GDPt10 sectionKt.4
gross_fixed_capital_formationt.s sectionAt.1 sectionLt.7
sectionLt4 sectionAt.2 sectionLt.o
gross_capital_formationt.4 sectionAt3 sectionLt.10
gross_fixed_capital_formationt.4 sectionAt4 sectionMNt.3
sectiondts sectionAts sectionMNt.4
sectionGHlto sectionAts sectionMNt.5
sectionGHlt-10 sectionAt.s sectionOPQts
sectionBCDEt.2 sectionOPQt.10
sectionBCDE4 sectionRSTUt1
sectionBCDEt.9 sectionRSTUt4
sectionFt.2 sectionRSTUt6
sectionFt.s Taxesto
sectionF.7 Subsidiest.7
sectionFt.s GGts
sectionGHl.1 gross_fixed_capital_formationt.e
sectionGHlt.2 export_servicest.1o




