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Abstract 
 

The Gross Domestic Product (GDP) is one of the most well-established, well-known and relevant 

official statistical metrics. The exploration of the components that mainly affect the evolvement of 

GDP, aiming at concluding to the prediction of GDP, is placed high at the statistical and 

macroeconomic scientific agenda. Given quarterly time series measurements of GDP and its 

components, the objective is to predict GDP given the past data up to the current quarter. For many 

components and long horizon of past values, this is a high-dimensional regression problem, and 

dimension reduction has to be called in. There are different approaches in the literature for variable 

selection, such as the least absolute shrinkage and selection operator (LASSO), or variable 

extraction, such as the principal component regression (PCR). Here, a new prediction model is 

proposed applying a stepwise forward selection algorithm using as selection criterion the partial 

correlation for evaluating the conditional lag Granger causality of any of the candidate components 

(including past GDP) to the next quarter GDP. The termination criterion is a properly designed 

parametric hypothesis test, ensuring a balance between model complexity and predictive power. A 

simulation study is conducted to assess the reliability and consistency of the algorithm and compare 

it to other approaches, such as LASSO and PCR. The applicability of the proposed algorithm is 

demonstrated using time series data of the Greek GDP and its components, compiled by ELSTAT. 

By applying the algorithm to this dataset, the variables that most influence GDP fluctuations are 

identified. The selected variables are then used to form a prediction model, contributing to accurate 

predictions. This study is carried out in the framework of the EMOS programme of the Aristotle 

University of Thessaloniki in Greece. 

Keywords: Gross Domestic Product, prediction model, multivariate time series, variable selection, 

partial correlation  

 

1. Introduction 
Most economic systems describe interactions among various economic indicators. 

Multivariate time series analysis using vector autoregressive (VAR) models investigates these 

interactions for accurate predictions. However, when the multivariate time series has high dimension 

(many observed variables), dimension reduction techniques are required such as variable extraction 

and variable selection (Siggiridou and Kugiumtzis, 2016; Dallakyan et al., 2022). Variable selection 

aims to identify the optimal subset of the observed variables to predict the response variable. Here, 

we propose a new variable selection algorithm for linear models making use of standard statistical 



tools, i.e., the partial correlation for measuring interaction and parametric hypothesis test for its 

significance. This method is applied to Greek GDP data and its components data, compiled by the 

Hellenic Statistical Authority (ELSTAT) and available on their official website. We focus on the 

components of the production and expenditure approaches, totaling 20 components. A detailed 

description is provided in Appendix A. Using a VAR(10) model on 21 variables, including lag values 

of GDP, we check relationships across 10 lags with final objective to predict GDP.  

The paper is structured as follows. In Section 2 the theoretical framework is briefly given. In 

Section 3 the proposed method is presented, and in Section 4 alternative models of dimension 

reduction are discussed. The simulation study and the application to Greek GDP data are described 

and the results are discussed in Section 5. The paper concludes in Section 6 with final remarks. 

2. Theoretical Framework 
Correlation analysis quantifies relationships between variables with Pearson correlation 

coefficient (denoted 𝑟) capturing linear correlations. For continuous variables 𝑋 and 𝑌 and a bivariate 

sample of size 𝛮 it is defined as 𝑟(𝑋, 𝑌) =
cov(𝑋,𝑌)

var(𝑋)var(𝑌)
, were 𝑐𝑜𝑣(𝑋, 𝑌) denotes the sample covariance 

and var(X) the sample variance of X. A parametric significance test for 𝑟 is designed using the Fisher’s 

transform so that the test statistic 𝑟𝑓 has asymptotically  normal null distribution with mean 0 and 

variance 
1

𝑁−3
 (Choi et al., 2020). For time series observations of the two variables, {𝑋𝑡, 𝑌𝑡}, 𝑡 = 1, . . , 𝑁, 

the 𝑟(𝑋𝑡 , 𝑌𝑡+𝜏) is the cross-correlation at lag 𝜏. 

The partial correlation coefficient evaluates the linear relationship between two variables 𝑋1 

and 𝑋2, while controlling for other variables 𝑍 = {𝑍1, … , 𝑍𝑚}. It is calculated by regressing 𝑋1 and 𝑋2 

on 𝑍 obtaining residuals 𝑢𝑋1
 and 𝑢𝑋2

. The partial correlation is then  𝑟(𝑋𝑌|𝑍)⬚ = 𝑐𝑜𝑟𝑟(𝑢𝑋1
, 𝑢𝑋2

) =

cov(𝑢𝑋1
,𝑢𝑋2

)

√var(𝑢𝑋1
)∙√var(𝑢𝑋2

)

 (Li et al., 2017). Fisher’s transformation is also used here to form normal null 

distribution with mean 0 and variance 
1

𝑁−𝑚−3
, where m is the number of variables in vector 𝑍 (Choi et 

al., 2020; Williams & Rast, 2020). 

3. Proposed method 
Let {𝑋1,𝑡, … , 𝑋𝐾,𝑡}, 𝑡 = 1, . . , 𝑁, be a 𝐾-dimensional multivariate time series of length 𝑁. The VAR 

model of order 𝑝 for the response variable 𝑋𝑖,𝑡 represents each variable as a linear function of past 

values of all 𝐾 variables up to lag 𝑝 and a white noise error term (Lütkepohl 2005). For large 𝐾 or 𝑝, 

the VAR(p) model may contain redundant or irrelevant terms and if 𝑁 is short their coefficients may 

erroneously be estimated as significant. To render a sparse VAR (error terms much less than 𝐾𝑝), a 

stepwise variable selection scheme based on the partial correlation coefficient is proposed here, 

aiming to enhance the prediction accuracy.  



Initially, we create an extended dataset of 𝐾𝑝 lag variables up to order 𝑝 from the original 𝐾 

variables: 𝑊 = {𝑋1,𝑡−1, … , 𝑋𝐾,𝑡−1, 𝑋1,𝑡−2, … 𝑋𝐾,𝑡−𝑝} = {𝑤1, … , 𝑤𝐾∙𝑝}. Suppose the response variable is 

𝑦 ≔ 𝑋1,𝑡 (or any of the 𝐾 variables). Starting with an empty vector 𝒘, lag variables of 𝑊 are 

progressively added based on their correlation with 𝑦. The correlation is quantified with the correlation 

coefficient (cross-correlation) 𝑟(𝑦, 𝑤) in the first step and partial correlation 𝑟(𝑦, 𝑤|𝒘) for the 

subsequent steps, where 𝑤 is any of the 𝐾𝑝 candidate lag variables. The lag variable maximizing the 

absolute value of the correlation is selected to be added to 𝒘 at each step. For the termination criterion 

checked at each completed step, a proper parametric hypothesis test is designed. To find the 

distribution of the maximum absolute correlation, we first assume the normal distribution of the Fisher-

transformed (partial) correlation coefficients 𝑟𝑓. Denoting 𝑀 the maximum of 𝑛 ≤ 𝐾𝑝 absolute (partial) 

correlation coefficients and assuming them independent, , its distribution is given by (Choi et al., 2020; 

Coles, 2001): 

𝑃[𝑀 ≤ 𝑧] = 𝑃[𝑟1 ≤ 𝑧, … , 𝑟𝑛 ≤ 𝑧] = 𝑃[𝑟1 ≤ 𝑧] ∙ … ∙ 𝑃[𝑟𝑛 ≤ 𝑧] = {𝛷 (
𝑧

𝑠
)}

𝑛

. 

Therefore, the critical value 𝑧1−𝑎 for a significance level 𝑎 is 𝑧1−𝑎 = 𝛷−1( √1 − 𝑎
𝑛

) ∙ 𝑠, where 

𝛷(∙) is the cumulative density function of the standard normal distribution and 𝑠 is the standard 

deviation of the transformed correlation coefficients. At each but the first two steps, a backward 

revision check is applied (if any of the existing terms in 𝒘 has to be dropped in view of the selected 

lag variable) to ensure the selected variables significantly affect the response variable (Derksen & 

Keselman, 1992).  

A pseudo-code of the algorithm is given in Figure 5 in Appendix B.  

The steps of the algorithm are illustrated below for the following VAR(2) stationary system on 

three variables: 

 𝛸1,𝑡 = 0,439𝑋1,𝑡−1 + 0,294𝑋2,𝑡−1 + 0,329𝑋3,𝑡−2+𝜀1,𝑡 

 𝑋2,𝑡 = 0,293𝑋1,𝑡−2 + 0,377𝑋2,𝑡−1 + 0,316𝑋3,𝑡−1+𝜀2,𝑡 

 𝑋3,𝑡 = 0,191𝑋1,𝑡−1 + 0,485𝑋2,𝑡−1 + 0,362𝑋3,𝑡−1 − 0,179𝑋3,𝑡−2+𝜀3,𝑡, 

where 𝜀𝑖,𝑡, 𝑖 = 1,2,3, is uncorrelated white noise. The response variable is  𝑦 ≔ 𝑋1,𝑡, and the generated 

time series has length 𝑁 = 400. In the first step, the  cross-correlation between 𝑦 and each candidate 

lag variable from the set 𝑊 = {𝑋1,𝑡−1, 𝑋2,𝑡−1, … , 𝑋3,𝑡−2} = {𝑤1, … , 𝑤6} is computed and after applying 

Fisher’s transformation (𝑟𝑓), the lag variable with the highest absolute correlation is selected and 

tested for significance (coefficient is compared to the respective critical value 𝑧1−𝑎 for 𝑎 = 0.05). This 

selected variable is added to the initially empty 𝒘. Partial correlations are then calculated sequentially, 

following the same steps until no further lag variables of statistically significant maximum partial 



correlation are found. Backward revision at each step > 2 ensures optimal variable selection. The 

procedure is called PartialCor and it is shown analytically in Figure 1 and shows that the algorithm 

has correctly selected the variables that most affect the response variable: 𝒘 = {𝑤1, 𝑤6, 𝑤2} =

{𝑋1,𝑡−1, 𝑋3,𝑡−2, 𝑋2,𝑡−1}. 

Figure 1: Steps of the proposed algorithm applied to a VAR(2) system. 

 

4. Other methods 
This new method is compared with other dimension reduction techniques: 1) LASSO selects 

variables by shrinking coefficients to zero through a penalty term, with the lambda parameter chosen 

via five-fold cross-validation (Tibshirani, 1996). 2) The modified Backward in Time Selection (mBTS) 

builds a dynamic regression model by selecting the most relevant lagged variables to the response 

starting from the most current lag and going backwards in time (Siggiridou & Kugiumtzis, 2016). 3) 

PCR is a variable extraction technique that forms the 𝐾 principal components to be linear 

combinations of the 𝐾 original variables ranked under uncorrelatedness and maximum variance 

assumption, with the number of the first principal components chosen to explain 95% variance of the 

original data (Massy, 1965). 4) Additionally, the simple autoregressive AR(p) model is applied (Wei, 

1990). 

5. Results 
In this section, we present results for both the simulation study and the application to real data. 

5.1 Simulation study 

5.1.1 Statistical Evaluation and Setup 

The efficacy of the proposed method is evaluated through simulation assessing the following 

five metrics. Sensitivity measures the proportion of correctly identified relevant variables, specificity 

measures the correctly excluded irrelevant variables and precision measures the accuracy of the 



algorithm’s choices. Matthews Correlation Coefficient (MCC) ranging from -1 to +1, indicates binary 

classification performance, while F-score is the harmonic mean of precision and sensitivity (Chicco & 

Jurman, 2020). The predictive capability is tested with a 70-30% split of the synthetic data into training 

and test sets and evaluated by the adjusted 𝑅2, denoted 𝑅adj
2 . Additionally, the robustness of the 

method’s parametric hypothesis test is compared with a resampling significance test where the 

resampled time series are derived by random time-shifting.  

The simulation systems VAR stationary stochastic processes on 21 variables of order 10, 

formed on the basis of the Greek GDP time series as follows. First, the proposed algorithm is applied 

to the dataset three times at a varying significance level 𝑎, to attain VAR models of varying sparsity. 

Each of the three VAR models is then used as the generating stochastic process and 100 realizations 

are generated. All the subsequent hypothesis tests maintain a significance level of 𝑎 = 0.05. 

5.1.2 System 1: Very Sparse  

Firstly, to derive a very sparse VAR process significance level is set to 𝑎 = 0.05 (the system 

equations are given in Appendix C.1). We assess the termination criteria in PartialCor with the 

parametric test versus the resampling test. For long time series, both criteria perform similarly well in 

selecting the true lag variables, as shown in Figure 2a and\ excluding irrelevant variables correctly, 

as shown in Figure 2b (the results on all metrics are given in Appendix C.1). 

Figure 2: Sensitivity in (a) and Specificity in (b) vs time series length 𝑁 for the termination criterion using the 
parametric and resampling significance test as given in the legend. 

 

5.1.3 System 2: Sparse 

Increasing the significance level to 𝑎 = 0.25 in our procedure, the generating stochastic 

process contain more terms (system equations are given in Appendix C.2). We compare the proposed 

algorithm with LASSO and mBTS for variable selection, in two stages: ’VL’, evaluating the ability to 

select both the correct variables and their appropriate lags, and ‘V’, assessing the selection of the 

appropriate variables alone regardless of the lag. Figure 3a shows high sensitivity for PartialCor and 

LASSO and Figure3b shows high specificity for PartialCor for both stages, whereas LASSO and 

mBTS perform poorly when assessing stage ‘V’ selection. Table 4 in Appendix C.2 presents results 

for all five metrics. 



Figure 3: Sensitivity in (a) and Specificity in (b) vs 𝑁 for the variable selection methods PartialCor, LASSO and 
mBTS in the two stages VL and L as denoted in the legend. 

 

5.1.4 System 3: Dense 

For significance level 𝑎 = 0.40 we obtain the largest VAR system (system equations are given 

in Appendix C.2). We compare the performance of PartialCor in terms of 𝑅adj
2  with this of LASSO, 

mBTS, PCR and AR(10). As shown in Figure 4, regardless of 𝑁, LASSO and PartialCor exhibit nearly 

identical predictive power. Detailed results on the predictive performance for each of the 21 response 

variables are given in Table 5 in Appendix C.3. 

Figure 4: Average 𝑅𝑎𝑑𝑗
2  vs time series length N over 100 realizations for five methods listed in the legend 

considering X1,t as the response variable 

 

5.2 Greek GDP data 

We aim to predict quarterly GDP for the next quarter using historical data, including GDP past 

values from a sparse VAR(10) model. The proposed algorithm PatialCor identified two significant lag 

variables, ‘GDPt-1’ and ‘subsidiest-6’. Compared to LASSO and mBTS, our algorithm selects fewer 

optimal lag variables. LASSO method includes these two lag variables and 27 more, while mBTS 

includes ‘GDPt-1’, a different lag for the other and 25 more, only 5 of these common with LASSO (the 

exact subsets are given in Table 6 in Appendix D.1). We then performed linear regression with the 

selected lag variables making both in-sample and five-fold cross-validation prediction. For this, we 

use 𝑅adj
2  and also the normalized root mean square error (NRMSE). LASSO performs best in in-

sample predictions as it achieves the smallest NRMSE, while PartialCor scores better in NRMSE than 

PCR and AR(10) methods. Cross-validation results show that PartialCor outperforms the other four 



methods giving the highest 𝑅adj
2  and smallest NRMSE being strongly statistically significant using the 

Diebold Mariano test (Chen et al., 2014). Actually this test found no statistical difference of PartialCor 

only to AR(10) in in-sample prediction, as shown in Table 1. Time comparison shows similar 

performance between the variable selection methods, with PartialCor being slightly faster.  

Table 1: NRMSE, 𝑅𝑎𝑑𝑗
2  and execution time in seconds for GDP prediction from 1995 Q1 to 2023 Q4. The (*) 

denotes no statistical difference in NRMSE from PartialCor using Diebold Mariano test. 

Prediction Metric PartialCor mBTS LASSO PCR AR(10) 

In-Sample 

NRMSE 0,143 0,114 0,098 0,228 0,152* 

 𝑅adj
2  0,979 0,982 0,986 0,945 0,974 

Time  3,803 5,677 5,079 0,007 0,001 

Cross-Validation 

NRMSE 0,192 0,820 0,276 0,626 0,254 

𝑅adj
2  0,962 0,314 0,923 0,601 0,934 

Time  3,811 5,687 5,088 0,053 0,008 

 

The reference year for GDP and its components was updated to 2015, impacting data from 

2010 to 2023. While the initial dataset starts from 1995, revisions from 2010 onwards reflect the new 

reference year of 2015. Therefore, we repeat the predictions limiting the dataset to this period. The 

PartialCor identifies ‘GDPt-1’ as significant variable, similar to LASSO and mBTS. While LASSO 

selects 14 variables, mBTS finds 46, neither of them common with these of LASSO (the subsets of 

lag variables are given in Table 7 in Appendix D.2).  

Table 2: NRMSE, 𝑅𝑎𝑑𝑗
2  and execution time in seconds for GDP prediction from 2010 Q1 to 2023 Q4 (revised 

time series). The (*) denotes no statistical difference in NRMSE from PartialCor using Diebold Mariano test. 

Prediction Metric PartialCor mBTS LASSO PCR AR(10) 

In-Sample 

NRMSE 0,559 0,000 0,246* 0,459* 0,548* 

𝑅adj
2  0,665 1,000 0,907 0,706 0,616 

Time 6,484 7,445 6,955 0,209 0,006 

Cross-Validation 

NRMSE 0,674 5,372 0,666* 0,767* 0,838* 

𝑅adj
2  0,526 -29,168 0,537 0,385 0,266 

Time 6,688 8,026 6,286 0,019 0,008 

 

In Table 2, in-sample predictions show mBTS are excellent but due to overfitting (many lag 

variables) as it fails in cross-validation. Other methods demonstrate decreased performance due to 

fewer observations. Regarding PartialCor, even though it obtains the worst results in the in-sample 

predictions, the Diebold-Mariano test showed that it has no statistical difference from all other 

methods except from mBTS. In cross-validation there is also no statistical difference with all models 

apart from mBTS. 

6. Conclusions 
In this work we introduced a new method for GDP prediction using Ganger causality and partial 

correlation-based lag variable selection called PartialCor. This approach enhances multivariate time 



series management and forecasting by finding direct linear relationships between lag variables and 

response. When the PartialCor was applied to Greek GDP data and its components it identified two 

variables as optimal, ‘GDP’ for the previous quarter and ‘subsidies’ of 6 quarters before. Restricting 

data to revised quarters highlighted ‘GDPt-1’ as the sole significant variable. Comparative analysis, 

including simulations and real-word application to Greek GDP data, highlights that the proposed 

algorithm PartialCor is a simple, fast and accurate method for sparse modeling and prediction, 

positioning it as a compelling choice among other more involved methods. Explicitly, this method 

includes a reliable parametric hypothesis-based termination criterion and offers straightforward 

interpretation, effective and consistent performance in variable selection as well as it is time efficient. 
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Appendix 

Appendix A: Variables Description 

National Accounts, compiled by Hellenic Statistical Authority (ELSTAT) following the 

European System of Accounts ESA 2010, provide a comprehensive description of a country’s 

economy Gross Domestic Product (GDP) being a key indicator, represents total value of final goods 

and services produced, without intermediate consumption. The estimations we use are chain link 

volume data, seasonally adjusted based on JDemetra+ software in accordance with the Greek diary. 

Measurements recorded start from the first quarter of 1995 up to the most recent quarter. Listed below 

are the components of production and expenditure approaches that will be used to predict GDP. 

From production approach mainly contains classes of economic activities, which European 

Community (NACE Rev.2) in ten cumulative sections, there are the following components. 

▪ sectionA. It includes agricultural, forestry and fishing occupations. 

▪ sectionBCDE. This one contains the extraction of natural minerals as well as activities aimed at 

preparing the raw materials so that they can be sold on the market. Additionally, it includes 

manufacturing and the operation of business responsible for the supply of electricity, natural gas, 

steam and air conditioning. Finally, activities related to collection, treatment and supply of water 

and treatment process of all types of waste are also included in this component. 

▪ sectionF. It encompasses construction activities such as, construction of buildings or construction 

of civil engineering projects and their repair. 

▪ sectionGHI. This component includes retail and wholesale trade. It also includes the trade, repair 

and washing of vehicles and motorcycles, activities of transporting goods and people through all 

kinds of roads. Finally, it contains the provision of short-term accommodation services and 

catering services for immediate consumption. 

▪ sectionJ. This section encompasses various media, information and communication technologies 

as well as all the activities of production and distribution of information products. 

▪ sectionK. It includes financial services and insurance activities. 

▪ sectionL. Activities related to the management of real estate belong to this component. 

▪ sectionMN. It concerns activities of professional, scientific and technical content as well as 

activities that support various business pursuits. 

▪ sectionOPQ. This component contains government-related and compulsory social security 

activities. Also, all education stages, activities related to human health protection issues, provided 

by professionals, and social welfare issues are included. 

▪ sectionRSTU. Related to entertainment and arts. Additionally, it contains activities related to the 

repair of household goods and services that are not classified in any other category. 

▪ taxes. Taxes on products. 

▪ subsidies. Subsidies on products. 



From expenditure approach, there are the following components. 

▪ households_NPISH. It refers to expenditure of households and NPISH (Non-profit institutions that 

serve households), which are neither financed nor controlled by the state. 

▪ GG. It contains General Government expenditure. 

▪ fixed_gross_capital_formation. Gross fixed capital formation is the country’s investments in fixed 

assets (i.e. physical assets with a lifespan of more than one year). 

▪ gross_capital_formation. It is the sum of gross fixed capital formation that was defined in the 

previous component with the value of goods held as inventory by businesses. 

▪ export_goods. Exports of goods. 

▪ export_services. Exports of services. 

▪ import_goods. Imports of goods. 

▪ import_services. Imports of services. 

Thus, 20 components are linked to GDP. More information can be found on the website of ELSTAT 

(https://www.statistics.gr/) and the European Statistical Service (https://ec.europa.eu/eurostat). 

Appendix B: Proposed Algorithm 

 

Figure 5: Pseudo-code including the steps of the proposed algorithm PartialCor to find the optimal subset of 
lag variables for prediction. 

 

https://www.statistics.gr/
https://ec.europa.eu/eurostat


Appendix C: Simulation Study Systems and Results 

Appendix C.1: System 1: Very Sparse 

A VAR(10) stationary process on 21 variables derived by applying the proposed algorithm PartialCor 

in Greek GDP data while setting the significance level 𝛼 = 0.05. 

 𝑋1,𝑡 = 𝑎1,1𝑋1,𝑡−1 + 𝑎1,2𝑋13,𝑡−6 + 𝑒1,𝑡 

 𝑋2,𝑡 = 𝑎2,1𝑋2,𝑡−1 + 𝑒2,𝑡 

 𝑋3,𝑡 = 𝑎3,1𝑋3,𝑡−1 + 𝑒3,𝑡 

 𝑋4,𝑡 = 𝑎4,1𝛸4,𝑡−1 + 𝑒4,𝑡 

 𝑋5,𝑡 = 𝑎5,1𝑋5,𝑡−1 + 𝑎5,2𝑋4,𝑡−4 + 𝑒5,𝑡 

 𝑋6,𝑡 = 𝑎6,1𝑋6,𝑡−1 + 𝑎6,2𝑋12,𝑡−4 + 𝑎6,3𝑋2,𝑡−10 + 𝑒6,𝑡 

 𝑋7,𝑡 = 𝑎7,1𝑋7,𝑡−1 + 𝑒7,𝑡 

 𝑋8,𝑡 = 𝑎8,1𝑋2,𝑡−1 + 𝑎8,2 𝑋8,𝑡−1 + 𝑎8,3𝑋8,𝑡−2 + 𝑒8,𝑡 

 𝑋9,𝑡 = 𝑎9,1𝑋9,𝑡−1 + 𝑎9,2𝑋13,𝑡−6 + 𝑒9,𝑡 

 𝑋10,𝑡 = 𝑎10,1𝑋10,𝑡−1 + 𝑎10,2𝑋1,𝑡−4 + 𝑎10,3𝑋2,𝑡−9 + 𝑎10,4𝑋4,𝑡−9 + 𝑎10,5𝑋9,𝑡−9 + 𝑒10,𝑡 

 𝑋11,𝑡 = 𝑎11,1𝑋11,𝑡−1 + 𝑎11,2𝑋16,𝑡−2 + 𝑎11,3𝑋4,𝑡−9 + 𝑎11,4𝑋17,𝑡−10 + 𝑒11,𝑡 

 𝑋12,𝑡 = 𝑎12,1𝑋6,𝑡−1 + 𝑎12,2𝑋12,𝑡−1 + 𝑒12,𝑡 

 𝑋13,𝑡 = 𝛼13,1𝛸13,𝑡−1 + 𝑒13,𝑡 

 𝑋14,𝑡 = 𝑎14,1𝑋14,𝑡−1 + 𝑎14,2𝑋15,𝑡−1 + 𝑎14,3𝑋5,𝑡−7 + 𝑒14,𝑡 

 𝑋15,𝑡 = 𝑎15,1𝑋15,𝑡−1 + 𝑎15,2𝑋16,𝑡−2 + 𝑒15,𝑡 

 𝑋16,𝑡 = 𝑎16,1𝑋16,𝑡−1 + 𝑒16,𝑡 

 𝑋17,𝑡 = 𝑎17,1𝑋16,𝑡−1 + 𝑎17,2𝑋17,𝑡−1 + 𝑒17,𝑡 

 𝑋18,𝑡 = 𝑎18,1𝑋18,𝑡−1 + 𝑎18,2𝑋18,𝑡−2 + 𝑒18,𝑡 

 𝑋19,𝑡 = 𝑎19,1𝑋19,𝑡−1 + 𝑒19,𝑡 

 𝑋20,𝑡 = 𝑎20,1𝑋20,𝑡−1 + 𝑒20,𝑡 

 𝑋21,𝑡 = 𝑎21,1𝑋21,𝑡−1 + 𝑒21,𝑡 

 

Table 3: Mean and standard deviation (std) of five metrics: sensitivity, specificity, precision, MCC and f-score 
over 100 realizations using parametric test and resampling test (with 100 replications) as termination criterion 
in the proposed variable selection algorithm for various time series length 𝑁, for response variable 𝑋1,𝑡. 

N Test Statistic Sensitivity Specificity Precision MCC F-Score 

116 

parametric 
mean 0,720 0,999 0,830 0,761 0,751 

std 0,358 0,002 0,345 0,333 0,332 

resampling 
mean 0,015 0,995 0,020 0,010 0,017 

std 0,111 0,001 0,141 0,123 0,120 

400 

parametric 
mean 0,965 0,999 0,957 0,957 0,953 

std 0,128 0,002 0,120 0,105 0,112 

resampling 
mean 0,905 1,000 0,978 0,934 0,928 

std 0,210 0,001 0,120 0,152 0,161 

1000 

parametric 
mean 1,000 0,999 0,957 0,976 0,973 

std 0,000 0,002 0,120 0,068 0,075 

resampling 
mean 1,000 1,000 0,970 0,983 0,982 

std 0,000 0,001 0,096 0,053 0,058 



Appendix C.2: System 2: Sparse 

As system 1 in Appendix C.1 but for 𝛼 = 0.25. 

 𝑋1,𝑡 = 𝑎1,1𝑋1,𝑡−1 + 𝑎1,2𝑋15,𝑡−1 + 𝑎1,3𝑋13,𝑡−6 + +𝑒1,𝑡 

 𝑋2,𝑡 = 𝑎2,1𝑋2,𝑡−1 + 𝑎2,2𝑋19,𝑡−6 + 𝑒2,𝑡 

 𝑋3,𝑡 = 𝑎3,1𝑋3,𝑡−1 + 𝑒3,𝑡 

 𝑋4,𝑡 = 𝑎4,1𝛸3,𝑡−1 + 𝑎4,2𝛸4,𝑡−1 + 𝑎4,3𝛸8,𝑡−10 + 𝑒4,𝑡 

 𝑋5,𝑡 = 𝑎5,1𝑋5,𝑡−1 + 𝑎5,2𝑋4,𝑡−4 + 𝑒5,𝑡 

 𝑋6,𝑡 = 𝑎6,1𝑋6,𝑡−1 + 𝑎6,2𝑋12,𝑡−4 + 𝑎6,3𝑋2,𝑡−10 + 𝑒6,𝑡 

 𝑋7,𝑡 = 𝑎7,1𝑋7,𝑡−1 + 𝑎7,2𝑋20,𝑡−2 + 𝑒7,𝑡 

 𝑋8,𝑡 = 𝑎8,1𝑋2,𝑡−1 + 𝑎8,2 𝑋8,𝑡−1 + 𝑎8,3𝑋19,𝑡−1 + 𝑎8,4𝑋8,𝑡−2 + 𝑒8,𝑡 

 𝑋9,𝑡 = 𝑎9,1𝑋9,𝑡−1 + 𝑎9,2𝑋12,𝑡−3 + 𝑎9,3𝑋13,𝑡−6 + 𝑒9,𝑡 

 𝑋10,𝑡 = 𝑎10,1𝑋9,𝑡−1 + 𝑎10,2𝑋10,𝑡−1 + 𝑎10,3𝑋1,𝑡−4 + 𝑎10,4𝑋2,𝑡−9 + 𝑎10,5𝑋4,𝑡−9 + 𝑎10,6𝑋9,𝑡−9 + 𝑒10,𝑡 

 𝑋11,𝑡 = 𝑎11,1𝑋11,𝑡−1 + 𝑎11,2𝑋16,𝑡−2 + 𝑎11,3𝑋20,𝑡−3 + 𝑎11,4𝑋4,𝑡−9 + 𝑎11,5𝑋10,𝑡−9 + 𝑒11,𝑡 

 𝑋12,𝑡 = 𝑎12,1𝑋6,𝑡−1 + 𝑎12,2𝑋12,𝑡−1 + 𝑎12,3𝑋3,𝑡−2 + 𝑎12,4𝑋11,𝑡−3 + 𝑎12,5𝑋4,𝑡−9 + 𝑒12,𝑡 

 𝑋13,𝑡 = 𝛼13,1𝛸13,𝑡−1 + 𝛼13,2𝛸7,𝑡−2 + 𝛼13,3𝛸14,𝑡−10 + 𝑒13,𝑡 

 𝑋14,𝑡 = 𝑎14,1𝑋3,𝑡−1 + 𝑎14,2𝑋14,𝑡−1 + 𝑎14,3𝑋15,𝑡−1 + 𝑎14,4𝑋5,𝑡−7 + 𝑒14,𝑡 

 𝑋15,𝑡 = 𝑎15,1𝑋15,𝑡−1 + 𝑎15,2𝑋16,𝑡−2 + 𝑎15,3𝑋17,𝑡−2 + 𝑒15,𝑡 

 𝑋16,𝑡 = 𝑎16,1𝑋16,𝑡−1 + 𝑎16,2𝑋11,𝑡−2 + 𝑎16,3𝑋2,𝑡−5 + 𝑒16,𝑡 

 𝑋17,𝑡 = 𝑎17,1𝑋15,𝑡−1 + 𝑎17,2𝑋17,𝑡−1 + 𝑎17,3𝑋16,𝑡−2 + 𝑎17,4𝑋13,𝑡−7 + 𝑎17,5𝑋8,𝑡−10 + 𝑒17,𝑡 

 𝑋18,𝑡 = 𝑎18,1𝑋18,𝑡−1 + 𝑎18,2𝑋18,𝑡−2 + 𝑒18,𝑡 

 𝑋19,𝑡 = 𝑎19,1𝑋19,𝑡−1 + 𝑒19,𝑡 

 𝑋20,𝑡 = 𝑎20,1𝑋20,𝑡−1 + 𝑎20,2𝑋13,𝑡−9 + 𝑒20,𝑡 

 𝑋21,𝑡 = 𝑎21,1𝑋21,𝑡−1 + 𝑎21,2𝑋18,𝑡−6 + 𝑒21,𝑡 

 

Table 4: Average sensitivity, specificity, precision, MCC and f-score over 100 realizations of system 2 and for 
the methods Partial Cor, LASSO and mBTS, for various time series lengths N, considering 𝑋1,𝑡 as the 

response variable. 

N Method Stage Sensitivity Specificity Precision MCC F-Score 

116 

LASSO 
V 0,940 0,605 0,352 0,432 0,482 

VL 0,903 0,933 0,260 0,441 0,369 

PartialCor 
V 0,763 0,988 0,908 0,801 0,808 

VL 0,747 0,999 0,875 0,796 0,786 

mBTS 
V 0,590 0,493 0,172 0,065 0,256 

VL 0,356 0,922 0,079 0,134 0,123 

400 

LASSO 
V 0,987 0,616 0,346 0,453 0,497 

VL 0,987 0,938 0,244 0,462 0,376 

PartialCor 
V 0,983 0,997 0,988 0,982 0,983 

VL 0,983 1,000 0,988 0,984 0,983 

mBTS 
V 0,416 0,662 0,185 0,065 0,250 

VL 0,346 0,960 0,134 0,191 0,186 

1000 

LASSO 
V 1,000 0,594 0,348 0,453 0,496 

VL 1,000 0,934 0,243 0,461 0,372 

Partial Cor 
V 1,000 0,996 0,981 0,988 0,989 

VL 1,000 1,000 0,976 0,987 0,986 

mBTS 
V 0,380 0,645 0,159 0,022 0,220 

VL 0,326 0,957 0,115 0,169 0,164 



 

Appendix C.3: System 3: Dense 

As system 1 in Appendix C.1 but for 𝛼 = 0.40.. 

 𝑋1,𝑡 = 𝑎1,1𝑋1,𝑡−1 + 𝑎1,2𝑋15,𝑡−1 + 𝑎1,3𝑋13,𝑡−6 + +𝑒1,𝑡 

 𝑋2,𝑡 = 𝑎2,1𝑋2,𝑡−1 + 𝑎2,2𝑋19,𝑡−6 + 𝑒2,𝑡 

 𝑋3,𝑡 = 𝑎3,1𝑋3,𝑡−1 + 𝑒3,𝑡 

 𝑋4,𝑡 = 𝑎4,1𝛸3,𝑡−1 + 𝑎4,2𝛸4,𝑡−1 + 𝑎4,3𝛸8,𝑡−10 + 𝑒4,𝑡 

 𝑋5,𝑡 = 𝑎5,1𝑋5,𝑡−1 + 𝑎5,2𝑋4,𝑡−4 + 𝑒5,𝑡 

 𝑋6,𝑡 = 𝑎6,1𝑋6,𝑡−1 + 𝑎6,2𝑋15,𝑡−1 + 𝑎6,3𝑋12,𝑡−4 + 𝑎6,4𝑋3,𝑡−8 + 𝑎6,5𝑋4,𝑡−9 + 𝑎6,5𝑋15,𝑡−9 + 𝑒6,𝑡 

 𝑋7,𝑡 = 𝑎7,1𝑋7,𝑡−1 + 𝑎7,2𝑋20,𝑡−2 + 𝑒7,𝑡 

 𝑋8,𝑡 = 𝑎8,1𝑋2,𝑡−1 + 𝑎8,2 𝑋8,𝑡−1 + 𝑎8,3𝑋19,𝑡−1 + 𝑎8,4𝑋8,𝑡−2 + 𝑒8,𝑡 

 𝑋9,𝑡 = 𝑎9,1𝑋9,𝑡−1 + 𝑎9,2𝑋2,𝑡−2 + 𝑎9,3𝑋12,𝑡−3 + 𝑎9,4𝑋13,𝑡−6 + 𝑎9,5𝑋4,𝑡−8 + 𝑎9,6𝑋11,𝑡−8 + 𝑒9,𝑡 

 𝑋10,𝑡 = 𝑎10,1𝑋9,𝑡−1 + 𝑎10,2𝑋10,𝑡−1 + 𝑎10,3𝑋9,𝑡−2 + 𝑎10,4𝑋1,𝑡−4 + 𝑎10,5𝑋4,𝑡−5 + 𝑎10,6𝑋2,𝑡−9 + 𝑎10,7𝑋4,𝑡−9 +

𝑎10,8𝑋9,𝑡−9 + 𝑒10,𝑡 

 𝑋11,𝑡 = 𝑎11,1𝑋11,𝑡−1 + 𝑎11,2𝑋16,𝑡−2 + 𝑎11,3𝑋20,𝑡−3 + 𝑎11,4𝑋4,𝑡−9 + 𝑎11,5𝑋10,𝑡−9 + 𝑒11,𝑡 

 𝑋12,𝑡 = 𝑎12,1𝑋6,𝑡−1 + 𝑎12,2𝑋12,𝑡−1 + 𝑎12,3𝑋3,𝑡−2 + 𝑎12,4𝑋11,𝑡−3 + 𝑎12,5𝑋4,𝑡−9 + 𝑒12,𝑡 

 𝑋13,𝑡 = 𝛼13,1𝛸13,𝑡−1 + 𝛼13,2𝛸7,𝑡−2 + 𝛼13,3𝛸14,𝑡−10 + 𝑒13,𝑡 

 𝑋14,𝑡 = 𝑎14,1𝑋3,𝑡−1 + 𝑎14,2𝑋14,𝑡−1 + 𝑎14,3𝑋15,𝑡−1 + 𝑎14,4𝑋5,𝑡−7 + 𝑒14,𝑡 

 𝑋15,𝑡 = 𝑎15,1𝑋15,𝑡−1 + 𝑎15,2𝑋16,𝑡−2 + 𝑎15,3𝑋17,𝑡−2 + 𝑒15,𝑡 

 𝑋16,𝑡 = 𝑎16,1𝑋16,𝑡−1 + 𝑎16,2𝑋11,𝑡−2 + 𝑎16,3𝑋2,𝑡−5 + 𝑒16,𝑡 

 𝑋17,𝑡 = 𝑎17,1𝑋15,𝑡−1 + 𝑎17,2𝑋17,𝑡−1 + 𝑎17,3𝑋16,𝑡−2 + 𝑎17,4𝑋13,𝑡−7 + 𝑎17,5𝑋8,𝑡−10 + 𝑒17,𝑡 

 𝑋18,𝑡 = 𝑎18,1𝑋18,𝑡−1 + 𝑎18,2𝑋18,𝑡−2 + 𝑒18,𝑡 

 𝑋19,𝑡 = 𝑎19,1𝑋19,𝑡−1 + 𝑎19,2𝑋19,𝑡−2 + 𝑒19,𝑡 

 𝑋20,𝑡 = 𝑎20,1𝑋20,𝑡−1 + 𝑎20,2𝑋13,𝑡−9 + 𝑒20,𝑡 

 𝑋21,𝑡𝑎21,1𝑋21,𝑡−1 + 𝑎21,2𝑋18,𝑡−6 + 𝑒21,𝑡 



Table 5: Average values of 𝑅𝑎𝑑𝑗
2  from predictions over 100 realizations for time series of 

length 400 for five models considering each variable of the multivariate time series as the 
response variable. 

Response PartialCor mBTS LASSO PCR AR 

X1,t 0,836 0,723 0,834 0,575 0,725 

X2,t 0,766 0,602 0,766 0,444 0,542 

X3,t 0,636 0,574 0,665 0,304 0,555 

X4,t 0,820 0,606 0,819 0,554 0,547 

X5,t 0,788 0,602 0,786 0,501 0,510 

X6,t 0,915 0,744 0,911 0,777 0,551 

X7,t 0,730 0,538 0,742 0,422 0,551 

X8,t 0,856 0,571 0,852 0,623 0,499 

X9,t 0,912 0,710 0,907 0,763 0,567 

X10,t 0,941 0,738 0,935 0,828 0,573 

X11,t 0,915 0,666 0,911 0,774 0,542 

X12,t 0,914 0,714 0,912 0,779 0,553 

X13,t 0,834 0,623 0,833 0,591 0,607 

X14,t 0,851 0,724 0,847 0,621 0,595 

X15,t 0,878 0,623 0,876 0,690 0,596 

X16,t 0,862 0,614 0,860 0,661 0,520 

X17,t 0,901 0,672 0,897 0,734 0,574 

X18,t 0,769 0,496 0,776 0,493 0,464 

X19,t 0,786 0,585 0,786 0,482 0,503 

X20,t 0,781 0,617 0,782 0,509 0,644 

X21,t 0,755 0,541 0,755 0,471 0,530 
 

 

Appendix D: Greek GDP Data Results 

Appendix D.1: Greek GDP Data 1995 Q1 – 2023 Q4 

Table 6: Optimal subsets of lag variables found by applying the variable selection methods LASSO and mBTS 
on Greek GDP data and its components. 

LASSO mBTS 

GDPt-1 import_servicest-2 GDPt-1 sectionLt-1 

sectionBCDEt-1 sectionRSTUt-3 GDPt-2 sectionLt-7 

sectionFt-1 GGt-3 GDPt-3 sectionMNt-5 

sectionGHIt-1 sectionKt-4 GDPt-7 sectionOPQt-2 

sectionKt-1 import_goodst-4 sectionAt-2 sectionRSTUt-6 

sectionOPQt-1 sectionJt-5 sectionAt-5 Subsidiest-1 

sectionRSTt-1 sectionAt-6 sectionBCDEt-1 Subsidiest-7 

GGt-1 Subsidiest-6 sectionBCDEt-2 GGt-8 

import_goodst-1 Subsidiest-7 sectionBCDEt-3 gross_fixed_capital_formationt-3 

import_servicest-1 sectionBCDEt-8 sectionFt-5 gross_fixed_capital_formationt-9 

sectionAt-2 Subsidiest-8 sectionGHIt-3 export_goodst-2 

sectionBCDEt-2 sectionFt-9 sectionGHIt-5 export_servicest-2 

sectionOPQt-2 sectionKt-10 sectionJt-7 export_servicest-10 

Subsidiest-2 sectionRSTUt-10 sectionKt-4  

import_goodst-2    

 



Appendix D.2: Greek GDP Data 2010 Q1 – 2023 Q4 

 

Table 7: Optimal subsets of lag variables found by applying the variable selection methods LASSO and mBTS 
on Greek GDP data and its components. 

LASSO mBTS 

GDPt-1 GDPt-1 sectionGHIt-3 

sectionLt-1 GDPt-2 sectionGHIt-5 

gross_capital_formationt-2 GDPt-3 sectionJt-6 

gross_fixed_capital_formationt-2 GDPt-6 sectionJt-8 

import_goodst-2 GDPt-7 sectionJt-9 

GGt-3 GDPt-8 sectionKt-3 

gross_capital_formationt-3 GDPt-10 sectionKt-4 

gross_fixed_capital_formationt-3 sectionAt-1 sectionLt-7 

sectionLt-4 sectionAt-2 sectionLt-9 

gross_capital_formationt-4 sectionAt-3 sectionLt-10 

gross_fixed_capital_formationt-4 sectionAt-4 sectionMNt-3 

sectionJt-5 sectionAt-5 sectionMNt-4 

sectionGHIt-9 sectionAt-6 sectionMNt-5 

sectionGHIt-10 sectionAt-8 sectionOPQt-8 

 sectionBCDEt-2 sectionOPQt-10 

 sectionBCDEt-4 sectionRSTUt-1 

 sectionBCDEt-9 sectionRSTUt-4 

 sectionFt-2 sectionRSTUt-6 

 sectionFt-5 Taxest-9 

 sectionFt-7 Subsidiest-7 

 sectionFt-8 GGt-8 

 sectionGHIt-1 gross_fixed_capital_formationt-9 

 sectionGHIt-2 export_servicest-10 

 


