Inferences to a voluntary sample in a household survey

Soonpil Kwon^{1,2} Heeyoung Jung¹, Youngmi Kwon¹

¹Statistics Korea, ²University of Seoul Speed Talk Session 3 5 June, 2024

> INSTITUTO NACIONAL DE ESTATÍSTICA STATISTICS PORTUGAL

eurostat

Objective

To estimate the population mean using the variable of interest obtained from a non-probability sample. → Reducing the selection bias of non-probability sample.

INSTITUTO NACIONAL DE ESTATÍSTICA

STATISTICS PORTUGAL

Assumptions

- 1. Existence of probability and non-probability samples represent the same population.
- 2. Variable of interest is only in the non-probability sample.
- 3. Two samples share useful covariate (auxiliary) variables.
- 4. Two samples are independent and don't have measurement error.

eurostat

partly financed by the

European Union

Notation

 $U = \{1, 2, \dots N\}$: the set of N units for the finite population

 y_i : interest variable, x_i : auxiliary variables, $i = 1, 2, \dots, N$ $\mu_v = N^{-1} \sum_{i=1}^{N} y_i$: population mean

 s_V : the size of n_V non-probability sample with $\{(x_i, y_i), i \in s_V\}$

 s_R : the size of n_R probability sample with $\{(x_i, d_i^R), i \in s_R\}$

 $d_i^R = 1/\pi_i^R$, where π_i^R is *i*th unit's inclusion probability, $i \in s_R$

 δ_i : indicator variable for unit *i*, $\begin{cases} \delta_i = 1, if i \in s_V \\ \delta_i = 0, if i \notin s_V \end{cases}$, i = 1, 2, ..., N

ly financed by the

eurostat

INSTITUTO NACIONAL DE ESTATÍSTICA STATISTICS PORTUGAL

INSTITUTO NACIONAL DE ESTATÍSTICA

eurostat 📀

INSTITUTO NACIONAL DE ESTATÍSTICA STATISTICS PORTUGAL

eurostat 💽

The conference is partly financed by the European Union

Estimators of mean

$$\mathbf{na\"ive est.} \longrightarrow \hat{\mu}_{naive} = n_V^{-1} \sum_{i \in S_V} y_i \qquad 0 \text{ Assume the } s_V \text{ is SRS}$$

$$\mathbf{ipw est.} \longrightarrow \hat{\mu}_{ipw} = \hat{N}_V^{-1} \sum_{i \in S_V} \hat{d}_i^V y_i \qquad \text{() Estimate propensity score } \hat{\pi}_i^V \text{ using logistic regression model} \rightarrow \hat{d}_i^V = 1/\hat{\pi}_i^V$$

$$\mathbf{reg est.} \longrightarrow \hat{\mu}_{reg} = \hat{N}_R^{-1} \sum_{i \in S_R} d_i^R \hat{y}_i \qquad \text{() Estimate the } \hat{y}_i \text{ of the regression model} \text{ in } s_V$$

$$\mathbf{dr est.} \longrightarrow \hat{\mu}_{dr} = \hat{N}_V^{-1} \sum_{i \in S_V} \hat{d}_i^V \{y_i - m(\mathbf{x}_i, \hat{\boldsymbol{\beta}})\} + \hat{\mu}_{reg} \qquad \text{() Estimate of } \mathbf{i} \text{ estimate of } \mathbf{i} \text{$$

INSTITUTO NACIONAL DE ESTATÍSTICA

eurostat

		$n_R = 400$			$n_R = 600$			$n_R = 800$			$n_R = 1000$		
	est.	%RB	MSE	%CP	%RB	MSE	%CP	%RB	MSE	%CP	%RB	MSE	%CP
$n_V = 400$	$\hat{\mu}_{naive}$	14.79	602,644	1.0	14.95	613,127	1.6	14.81	599,321	1.4	14.83	607,148	1. <mark>9</mark>
	$\hat{\mu}_{ipw}$	4.67	139,610	80.2	4.75	129,690	81.1	4.62	115,825	80.0	4.70	120,514	79. <mark>1</mark>
	$\hat{\mu}_{reg}$	5.16	123,599	76.0	5.30	124,151	75.2	5.23	118,257	74.5	5.40	126,731	71.9
	$\hat{\mu}_{dr}$	2.74	79,440	83.5	2.92	74,791	82.5	2.74	67,398	83.7	2.95	74,539	82.9
	$\hat{\mu}_{cal}$	2.17	59,184	84.9	2.31	55,411	84.2	2.39	52,400	84.8	2.49	56,792	82.6
$n_V = 600$	$\hat{\mu}_{naive}$	14.92	597,689	0.1	14.85	591,982	0.1	14.83	589,879	-	14.87	594,942	-
	$\hat{\mu}_{ipw}$	4.69	122,992	79.5	4.58	106,804	77.6	4.35	93,838	78.5	4.62	99,294	75.9
	$\hat{\mu}_{reg}$	5.45	119,642	68.1	5.20	108,204	67.9	5.06	100,247	67.8	5.24	104,931	65.6
	$\hat{\mu}_{dr}$	2.93	68,488	82.1	2.69	58,659	82.4	2.60	52,069	81.9	2.77	54,818	82.2
	$\hat{\mu}_{cal}$	2.58	54,733	81.9	2.33	46,816	82.5	2.24	40,135	83.4	2.32	40,264	82.4
$n_V = 800$	$\hat{\mu}_{naive}$	14.93	592,182	-	14.88	588,438	-	14.72	577,205	-	14.96	594,295	-
	$\hat{\mu}_{ipw}$	4.60	108,707	78.5	4.61	99,814	74.8	4.53	91,215	73.7	4.79	96,241	70.7
	$\hat{\mu}_{reg}$	5.36	105,077	65.2	5.30	103,548	62.4	5.20	97,053	60.7	5.49	105,282	55.5
	$\hat{\mu}_{dr}$	2.77	54,963	81.5	2.68	51,479	80.0	2.67	47,609	80.7	2.96	50,808	78.8
	$\hat{\mu}_{cal}$	2.50	43,753	83.7	2.45	41,930	81.4	2.31	37,416	80.6	2.56	39,894	79.6
$n_V = 1000$	$\hat{\mu}_{naive}$	14.90	586,305	-	14.78	577,734	-	14.84	582,508	-	14.84	582,583	-
	$\hat{\mu}_{ipw}$	4.55	102,444	77.0	4.64	95,328	72.2	4.59	88,834	72.9	4.47	85,819	70.6
	$\hat{\mu}_{reg}$	5.44	106,097	60.4	5.28	97,674	55.1	5.40	99,206	53.6	5.30	95,420	51.7
	$\hat{\mu}_{dr}$	2.77	53,680	79.4	2.66	46,179	80.1	2.78	45,114	78.3	2.72	43,588	78.3
	$\hat{\mu}_{cal}$	2.64	45,399	80.7	2.39	37,894	80.7	2.47	36,289	80.0	2.34	33,236	79.5

(%) MSE (SRS) %CP (SRS) %RB (SRS) (#10,000) (%) 100 700,000 16 90 1.4 600,000 80 12 500,000 70 60 400,000 50 300,000 40 30 200,000 20 100.000 _ –Naïve iow -e-reg ------cal

INSTITUTO NACIONAL DE ESTATÍSTICA

STATISTICS PORTUGAL

- These estimators reduce the bias of non-probability samples.
- Treating a non-probability sample as a simple random sample can lead to a serious selection bias.
- The MSE decreases as the sample size increases.
- The Bigdata Paradox arises as the sample size increases, leading to a decrease in the probability that 95% confidence interval of the estimate including the population mean.

The conference is

European Union

partly financed by the

eurostat

Additional notes

It's important the good auxiliary variables.

- Highly explanatory auxiliary variable → reg, dr → single weight not available → not preferred by NSI
- Categorical auxiliary variable CAL estimator for existed data

└₊ IPW estimator for survey designed data

INSTITUTO NACIONAL DE ESTATÍSTICA

STATISTICS PORTUGAL

eurostat

ly financed by the

Boostrap needs further development for variance estimation.

How to handle and interpret the remaining bias?

- If the bias can't be completely eliminated, its utility can be assessed through trend analysis over time.
- Alternative methods are needed to quantify the risk of selection bias or non-coverage in bigdata or non-probability samples.

INSTITUTO NACIONAL DE ESTATÍSTICA Statistics Portugal eurostat 💽 👘

The conference is partly financed by the European Union

References

Castro-Martín et al. (2020). Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques, *Mathematics, June 2020, 8(6)*, 879.

Chen, Y., Li, P. and Wu, C. (2020). "Doubly robust inference with non-probability survey samples", *Journal of the Americal Statistical Assocation* 115, 2011-2021.

Couper, M. P. (2013). "Is the sky falling? New technology changing media, and the future of surveys". Surv. Res. Methods, 7, 145-156.

Deville, J.C. and Särndal, C.E. (1992). "Calibration estimators in survey sampling", *Journal of the Americal Statistical Assocation* 87, 376-382.

Kim, J.K. (2022a),."A gentle introduction to data integration in survey sampling", *The Survey Statistician 85*, 19-29.

Thank You pilsogood@korea.kr

INSTITUTO NACIONAL DE ESTATÍSTICA

