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To estimate the population mean using the variable of interest obtained from a non-probability 

sample.           Reducing the selection bias of non-probability sample.
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Objective

Assumptions

1. Existence of probability and non-probability samples represent 

the same population.

2. Variable of interest is only in the non-probability sample. 

3. Two samples share useful covariate (auxiliary) variables. 

4. Two samples are independent and don’t have measurement 

error. 



: the set of units for the finite population

௜ : interest variable,  ௜ : auxiliary variables,  
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௜ ୀ ଵ : population mean  

𝑽 : the size of ௏ non-probability sample with 𝒊 𝒊 𝑽
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௜ : indicator variable for unit , 𝒊 𝑽
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Notation
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pop.

2021 survey 
of Household 
Finances and 

Living 
conditions

(N=18,000HH)

pop.mean
𝜇

(household 
income per 

month)

Non-prob.
sample

𝑠௏

(𝑛௏)

𝒙 𝐲
𝒅𝑽

(wgt)age gen 
der

# of people 
in HH

HH income
(\1,000)

30 F 1 2,500

?
35 M 2 4,000

43 M 4 6,000

⋮ ⋮ ⋮ ⋮

prob.
sample

      𝑠ோ

(𝑛ோ)

𝒙 𝐲
𝒅𝑹

(wgt)age gen 
Der

# of people 
in HH

HH income
(month)

35 M 1

?

20

45 F 3 18

58 M 4 19

⋮ ⋮ ⋮ ⋮

① Estimate 𝑑መ௜
௏ the weights of a 𝒔𝑽

by referencing the weights of a 𝒔𝑹

→ Estimate �̂�௏ =
∑ ௪ෝ೔௬೔

 
 

∑ ௪ෝ೔
 
 

② Estimate the 𝑦ො of the 𝒔𝑹 by 
referencing the relationship 
between 𝒙௜ and 𝑦௜ in 𝒔𝑽

→ Estimate �̂�ோ =
∑ ௪೔௬ො೔

 
 

∑ ௪೔
 
 

SRS

Poisson 
sampling

③ Combination ① & ②
→ Estimate �̂�஽ோ

+
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Estimators of mean

naïve est. ௡௔௜௩௘ ௏
ିଵ

௜

 

௜∈௦ೇ

ipw est. ௜௣௪ ௏
ିଵ

௜
௏

௜

 

௜∈௦ೇ

reg est. ௥௘௚ ோ
ିଵ

௜
ோ

௜

 

௜∈௦ೃ

dr est.

cal est. ௖௔௟ ௏,௖௔௟
ିଵ

௜,௖௔௟
௏

௜

 

௜∈௦ೇ

ௗ௥ ௏
ିଵ

௜
௏

 

௜∈௦ೇ

௜ ௜ ௥௘௚

① Estimate propensity score 𝜋ො௜
௏ using logistic 

regression model → 𝑑መ௜
௏ = 1/𝜋ො௜

௏

① Estimate 𝑑መ௜
௏ using calibration (GREG)

③ Combination of ① & ②

② Estimate the 𝑦ො௜ of the regression model in 𝒔𝑽

O Assume the 𝒔𝑽 is SRS
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𝒏𝑹 = 𝟒𝟎𝟎 𝒏𝑹 = 𝟔𝟎𝟎 𝒏𝑹 = 𝟖𝟎𝟎 𝒏𝑹 = 𝟏𝟎𝟎𝟎

est. %RB MSE %CP %RB MSE %CP %RB MSE %CP %RB MSE %CP

𝒏𝑽 = 𝟒𝟎𝟎

�̂�௡௔௜௩௘ 14.79 602,644 1.0 14.95 613,127 1.6 14.81 599,321 1.4 14.83 607,148 1.9

�̂�௜௣௪ 4.67 139,610 80.2 4.75 129,690 81.1 4.62 115,825 80.0 4.70 120,514 79.1

�̂�௥௘௚ 5.16 123,599 76.0 5.30 124,151 75.2 5.23 118,257 74.5 5.40 126,731 71.9

�̂�ௗ௥ 2.74 79,440 83.5 2.92 74,791 82.5 2.74 67,398 83.7 2.95 74,539 82.9

�̂�௖௔௟ 2.17 59,184 84.9 2.31 55,411 84.2 2.39 52,400 84.8 2.49 56,792 82.6

𝒏𝑽 = 𝟔𝟎𝟎

�̂�௡௔௜௩௘ 14.92 597,689 0.1 14.85 591,982 0.1 14.83 589,879 - 14.87 594,942 -

�̂�௜௣௪ 4.69 122,992 79.5 4.58 106,804 77.6 4.35 93,838 78.5 4.62 99,294 75.9

�̂�௥௘௚ 5.45 119,642 68.1 5.20 108,204 67.9 5.06 100,247 67.8 5.24 104,931 65.6

�̂�ௗ௥ 2.93 68,488 82.1 2.69 58,659 82.4 2.60 52,069 81.9 2.77 54,818 82.2

�̂�௖௔௟ 2.58 54,733 81.9 2.33 46,816 82.5 2.24 40,135 83.4 2.32 40,264 82.4

𝒏𝑽 = 𝟖𝟎𝟎

�̂�௡௔௜௩௘ 14.93 592,182 - 14.88 588,438 - 14.72 577,205 - 14.96 594,295 -

�̂�௜௣௪ 4.60 108,707 78.5 4.61 99,814 74.8 4.53 91,215 73.7 4.79 96,241 70.7

�̂�௥௘௚ 5.36 105,077 65.2 5.30 103,548 62.4 5.20 97,053 60.7 5.49 105,282 55.5

�̂�ௗ௥ 2.77 54,963 81.5 2.68 51,479 80.0 2.67 47,609 80.7 2.96 50,808 78.8

�̂�௖௔௟ 2.50 43,753 83.7 2.45 41,930 81.4 2.31 37,416 80.6 2.56 39,894 79.6

𝒏𝑽 = 𝟏𝟎𝟎𝟎

�̂�௡௔௜௩௘ 14.90 586,305 - 14.78 577,734 - 14.84 582,508 - 14.84 582,583 -

�̂�௜௣௪ 4.55 102,444 77.0 4.64 95,328 72.2 4.59 88,834 72.9 4.47 85,819 70.6

�̂�௥௘௚ 5.44 106,097 60.4 5.28 97,674 55.1 5.40 99,206 53.6 5.30 95,420 51.7

�̂�ௗ௥ 2.77 53,680 79.4 2.66 46,179 80.1 2.78 45,114 78.3 2.72 43,588 78.3

�̂�௖௔௟ 2.64 45,399 80.7 2.39 37,894 80.7 2.47 36,289 80.0 2.34 33,236 79.5
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• These estimators reduce the bias of 

non-probability samples.

• Treating a non-probability sample as 

a simple random sample can lead to 

a serious selection bias. 

• The MSE decreases as the sample 

size increases. 

• The Bigdata Paradox arises as the 

sample size increases, leading to a 

decrease in the probability that 95% 

confidence interval of the estimate 

including the population mean.
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Additional notes

It’s important the good auxiliary variables.

• Highly explanatory auxiliary variable → reg, dr → single weight not available → not preferred by NSI

• Categorical auxiliary variable

Boostrap needs further development for variance estimation.

How to handle and interpret the remaining bias?

• If the bias can’t be completely eliminated, its utility can be assessed through trend analysis over time. 

• Alternative methods are needed to quantify the risk of selection bias or non-coverage in bigdata or non-

probability samples. 

CAL estimator for existed data

IPW estimator for survey designed data
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