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Abstract 

We combine the probability sample data on job vacancies with online job advertisements (OJA) 
information and administrative data to improve the estimates of job vacancy totals in small 
population domains like municipalities. Since OJA data is a non-probability sample covering 
only a limited part of the survey population and its selection mechanism is unknown, we apply 
non-probability sample integration techniques to incorporate this information properly into the 
small area estimation models. The methodology proposed based on this application can be 
used in other estimation problems where incomplete additional information is available from 
administrative or alternative data sources. 

Keywords: non-probability sample, nearest neighbor imputation, model-calibration, small area 
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1. Introduction 

Auxiliary information available in probability sample surveys is important in obtaining as 

accurate parameter estimates in the finite population and its domains as possible. Having 

auxiliary data related to the study variables at the unit or domain (area) level provides a range 

of models to choose from that can improve the direct design-based estimates. Estimation 

approaches supported by models in different ways are well developed for estimating 

parameters in the population or its larger domains (Särndal et al., 1992; Wu & Thompson, 

2020) and in small population areas (Rao & Molina, 2015). 

The classical literature on survey statistics usually deals with idealized additional information: 

the values of auxiliary variables are assumed to fully cover the survey population at a detailed 

or at least some aggregated level. However, even the administrative data sources commonly 

used in official statistics often cover only a part of the population and, therefore, standard 

methods like calibration estimators (Deville & Särndal, 1992) cannot be applied immediately. 

In addition to administrative data, many other potentially useful sources do not meet the ideal 

(completeness or coverage) conditions, such as sample data from other probability surveys, 

non-probability samples, and big data samples. If earlier there were only separate attempts to 

properly utilize (integrate) all these types of additional data for estimation of population 



 

 

 

  

parameters, in recent years such research has been rapidly developed, as reviewed in Yang 

and Kim (2020). 

In the context of estimation in small population domains, when using aggregated auxiliary data 

in area-level models like in the famous Fay–Herriot (FH) model (Fay & Herriot, 1979), there 

are also specific challenges to employing incomplete auxiliary information. Ybarra and Lohr 

(2008) use unbiased estimators of auxiliary domain means obtained from the same or other 

preferably larger probability samples as covariates in area-level models. They show that a 

naive application of the FH model can lead to worse results than the direct estimation. They 

propose to use a modified version of the FH model allowing for measurement error in the 

auxiliary aggregates. A drawback of this approach is that the estimated covariates may be 

unavailable for some domains if the auxiliary variables are taken from samples that are not 

large enough. Although non-probability samples can be much larger than probability samples, 

it can be difficult to ensure that the estimators of auxiliary domain characteristics based on 

them would be approximately unbiased or to assess the biases of such estimators. This 

difficulty is due to the typically unknown selection mechanism of the non-probability samples 

(Rao, 2021; Wu, 2022). These biases cannot be ignored (Meng, 2018) and make the method 

of Ybarra and Lohr (2008) not immediately applicable because it requires the estimated mean 

squared errors (MSEs) for the estimated covariates. Among exceptions is the application of 

Marchetti et al. (2015), where a big data covariate is based on a non-probability sample treated 

as a simple random sample. Some more recent applications using area-level big data as 

additional predictors in various models are reviewed in Rao (2021). It should be noted that 

some applications ignore population coverage errors in certain big data variables, such as 

those compiled from Google Trends, mobile operators, or social network data. Administrative 

data covering almost the entire survey population can be treated in the same way, but this is 

more reasonable. 

In the application that motivates our study, the coverage of the population in big data is only 

very partial and it is a non-probability (voluntary) sample with an unknown selection 

mechanism. We have a quarterly probability sample of Lithuanian companies, from which the 

sums (totals) of job vacancies in municipalities are estimated. Apart from administrative 

information such as the monthly number of employees known for all companies in the 

population, we are most interested in the online job advertisement (OJA) data. The latter 

information, scraped weekly from the major job posting portals, is more related to the study 

variable. No matter how transformed, the OJA data cannot replace the values of the study 

variable but can be utilized as auxiliary information in modeling. 



 

 

 

  

Kim and Tam (2021) assume the linear regression relationship between the variable from a 

big non-probability sample and the study variable. This is a unit-level measurement error 

model. To estimate the population total, their idea is to stratify the population into a big data 

stratum and a missing data stratum. Then they apply the calibration estimation method with 

different conditions imposed on these artificial strata to exploit the big data sample as complete 

auxiliary information. Such Deville and Särndal (1992) type calibration could be applied to each 

population domain or small area separately, but it is not suitable in general if the underlying 

unit-level dependence between the variables is not linear as a non-linear relation between the 

count type variables in our application. 

We use the idea of Kim and Tam (2021) but through the model-calibration (MC) approach of 

Wu and Sitter (2001), which allows more general underlying unit-level models. The MC 

approach to improving the direct probability sample-based estimates in small areas is based 

on the predictions of the study variable in the big data stratum, which are further used in 

calibration constraints. Under certain conditions, the MC estimators of the population totals are 

asymptotically design-unbiased (Wu & Sitter, 2001). Due to this property, our estimation 

approach outlined in Section 2 has the second step modeling the MC estimates using exactly 

known area-level covariates. 

The application exploiting the incomplete OJA data and complete auxiliary information on the 

number of employees is presented in Section 3. Since it is complicated to make strong 

parametric model assumptions for unit-level measurement errors, we apply a non-parametric 

nearest neighbor imputation model to predict the job vacancies in the big data stratum defined 

by the available OJA data. Then the model-calibration of the probability sample weights is 

applied separately in each municipality. The MC estimates are further modeled using the FH 

model to obtain the empirical best linear unbiased predictions (EBLUPs), where the 

aggregated number of employees appears to be a good explanatory variable. We summarize 

our research findings in Section 4. 

2. Methodology outline 

Consider a finite population 𝑈 = {1, … , 𝑁} of size 𝑁. Let 𝐴 be a probability sample of size 𝑛 

drawn from 𝑈 according to a probability sampling design with the first-order inclusion 

probabilities π௜, 𝑖 ∈ 𝐴, and the values 𝑦௜, 𝑖 ∈ 𝐴, of the study variable 𝑦 are collected. We 

suppose that the vector values 𝑥௜ = ൫𝑥௜ଵ, … , 𝑥௜௣൯
ᇱ
, 𝑝 ≥ 1, of the auxiliary variables 𝑥 are known 

for 𝑖 ∈ 𝑈. 



 

 

 

  

Let 𝑈 = 𝑈ଵ ∪ ⋯ ∪ 𝑈ெ be the partition of the population into the non-overlapping domains, where 

the area 𝑈௠ contains 𝑁௠ elements. Then the domain sample 𝐴௠ = 𝐴 ∩ 𝑈௠ is of size 𝑛௠ ≤ 𝑁௠. 

We aim to estimate the domain totals 

𝑡௠ = ෍ 𝑦௜

௜∈௎೘

, 𝑚 = 1, … , 𝑀. (1) 

If the probability sampling design does not ensure fixed domain sample sizes 𝑛௠, they can be 

too small to get sufficiently accurate direct estimates. It means that the Hájek estimators  

�̂�௠
ୌ =

𝑁௠

𝑁෡௠

෍ 𝑑௜𝑦௜

௜∈஺೘

     with     𝑁෡௠ = ෍ 𝑑௜

௜∈஺೘

, 𝑚 = 1, … , 𝑀, (2) 

of totals (1), where 𝑑௜ = 1/π௜ are design weights and the numbers 𝑁௠ are assumed to be 

known, or other design-based estimators utilizing auxiliary data 𝑥 may have too high variances. 

In addition, a larger sample 𝐵 ⊂ 𝑈 of size 𝑁஻ is available, but its selection mechanism is 

unknown. In the latter non-probability sample, the values of 𝑦 are measured with an error. We 

assume that the samples 𝐴 and 𝐵 are linked at the unit level, and the values 𝑦௜ of the study 

variable 𝑦 can be related to the values 𝑦௜
∗ of the contaminated variable 𝑦∗ observed in the 

sample 𝐵 through a parametric or non-parametric measurement error model, which possibly 

uses some of the variables 𝑥 as covariates as well. It can be a simple linear regression model 

as in Kim and Tam (2021), more general non-linear parametric models considered in Wu and 

Sitter (2001), or non-parametric nearest neighbor models (Yang et al., 2021). 

If one of these models is suitable to describe the relationship between the variables 𝑦 and 𝑦∗ 

and the intersection 𝐴 ∩ 𝐵 is abundant enough for model fitting, we can apply the MC 

methodology according to Wu and Sitter (2001), where auxiliary information is used through 

the fitted values of 𝑦. Let 𝑦ො௜, 𝑖 ∈ 𝐵, be the predictions of 𝑦௜ obtained from the fitted model. The 

next step in our calibration version is to find the weights 𝑤௜, 𝑖 ∈ 𝐴, in 

�̂�௠
୑େ = ෍ 𝑤௜𝑦௜

௜∈஺೘

, 𝑚 = 1, … , 𝑀, (3) 

minimizing an average distance between the sets {𝑤௜,  𝑖 ∈ 𝐴௠} and {𝑑௜,  𝑖 ∈ 𝐴௠} for each 𝑚 =

1, … , 𝑀, subject to certain area-specific calibration constraints built as in Kim and Tam (2021). 

To construct the weights, let us introduce the indicator variable  

𝛿௜ = ൜
1   
0   

if  𝑖 ∈ 𝐵,    
otherwise,

 



 

 

 

  

which is also observed in the probability sample 𝐴. Suppose that at least the non-probability 

sample 𝐵 is large enough that all intersections of the sets 𝐴௠ and 𝐵௠ = 𝐵 ∩ 𝑈௠ are not empty. 

Otherwise, or if some intersections appear too small, we can apply simpler Hájek estimators 

(2) or other design-based estimators in the respective domains. For each 𝑚 = 1, … , 𝑀, we find 

the weights {𝑤௜,  𝑖 ∈ 𝐴௠} by minimizing the distance measure 

Φ௠ = ෍ 𝑑௜ ൬
𝑤௜

𝑑௜
− 1൰

ଶ

௜∈஺೘

, 

subject to the constraints 

෍ 𝑤௜

௜∈஺೘

δ௜ = 𝑁஻೘
,   ෍ 𝑤௜

௜∈஺೘

δ௜𝑦ො௜ = ෍ 𝑦ො௜

௜∈஻೘

,   and   ෍ 𝑤௜(1 − δ௜)

௜∈஺೘

= 𝑁௠ − 𝑁஻೘
, 

where 𝑁஻೘
 is the size of the non-probability sample subset 𝐵௠. The variances of estimators (3) 

are estimated by applying standard linearization or replication methods. In practice, the 

variance estimates can be calculated using the function calibrate from R package survey 

(Lumley, 2010). 

We treat the MC estimators (3) as approximately design-unbiased estimators of the domain 

totals (1). Then one can use them as the direct estimators in the standard FH model of Fay 

and Herriot (1979) or its extensions (Rao & Molina, 2015) to build EBLUPs of (1). The area-

level covariates used in these models are selected from the aggregated auxiliary variables 𝑥. 

Recent work by Harmening et al. (2023) provides convenient tools for applying the most 

common variants of the FH model using R package emdi. Let us denote by �̂�௠
୊ୌ, 𝑚 = 1, … , 𝑀, 

the EBLUPs of the domain totals (1). 

3. Application 

Data on job vacancies are collected in one of the statistical surveys of the State Data Agency 

(Statistics Lithuania). We demonstrate the application of the presented methodology to a 

probability sample of companies for the first quarter of 2023. This is a stratified simple random 

sample 𝐴 of size 𝑛 = 7  051 drawn from the population 𝑈 of size 𝑁 = 34  087. The observed 

values 𝑦௜ of the study variable 𝑦 are job vacancies at the end of the quarter in the sampled 

companies. A dataset of completely known auxiliary data 𝑥 contains supplementary variables 

such as the number of employees and some variables indicating economic activity available 

from administrative data sources and statistical registers. 

We aim to estimate the totals of the variable 𝑦 in 𝑀 = 60 municipalities. As the total sample 

size is not uniformly distributed across municipalities and the variance of the study variable 𝑦 



 

 

 

  

is large, the five-number summary (11.33, 37.22, 48.78, 63.07, 109.1) for estimates of the 

coefficients of variation (in percents) of the Hájek estimates (2) shows that the latter estimates 

cannot be published for most municipalities. 

The scraped weekly OJA data are transformed to better approximate the variable 𝑦. Since only 

the number of new OJAs is evaluated and recorded for each identified company, we first 

choose to assign zeros to a number of previous and subsequent weeks (for example, for 13 

and 26 weeks, respectively) with no records. Then, we derive the variable 𝑦∗ by summing the 

data of several last weeks of a quarter (for example, 6 weeks). The determined values of 𝑦∗ 

define the non-probability sample 𝐵 of size 𝑁஻ = 12 528. 

Both variables 𝑦 and 𝑦∗ are count variables with many zero values, and there are 3  468 

observations (𝑦௜ , 𝑦௜
∗, 𝑥௜) in the intersection 𝐴 ∩ 𝐵. For the prediction part of the MC method, one 

option is to fit a parametric model like a zero-inflated negative binomial regression. However, 

the latter regression is sensitive to outliers, and its efficiency varies greatly depending on the 

quarter. Our chosen alternative – the nearest neighbor imputation model – works much more 

accurately and is robust to outliers. Together with the variable 𝑦∗, the number of employees in 

the last month of a quarter (the auxiliary variable from the dataset 𝑥) is used to find the 3 

nearest neighbors in the set 𝐴 ∩ 𝐵 whose average of values 𝑦௜ is the prediction 𝑦ො௜. 

However, the percentage coverage of municipalities in the non-probability sample varies, as 

seen from the five-number summary (7.87, 29.69, 34.89, 39.43, 43.78). Therefore, the 

intersections 𝐴௠ ∩ 𝐵௠ are sometimes small in smaller areas. Moreover, such areas may be 

dominated by zero values of the variables 𝑦 and 𝑦∗. For these reasons, we safely apply the 

MC estimators (3) only to the largest 20 municipalities (by size 𝑁௠) and use the Hájek 

estimators (2) for the rest. Therefore, compared to the estimates of the coefficients of variation 

for the Hájek estimates, the improvement is only for the estimates of already acceptable 

accuracy, according to the summary (4.30, 31.84, 48.78, 63.07, 109.1) of the combined 

coefficients of variation. 

The log-transformed combined MC and Hájek estimates are modeled using the FH model. The 

model covariates are log-transformed domain totals of the number of employees in the last 

month of a quarter. The number of employees is a good predictor of job vacancies at least at 

the area level, so the resulting EBLUPs �̂�௠
୊ୌ drastically improve the results. The five-number 

summary (4.28, 23.39, 27.71, 29.88, 32.33) of the estimates of the coefficients of variation 

shows that, with a precision warning, all EBLUPs can be published. If only the Hájek estimates 

are modeled analogously, the respective accuracy summary (11.1, 27.33, 30.66, 33.43, 36.45) 

shows worse estimation results. 



 

 

 

  

4. Conclusions 

It happens in sample surveys that an additional variable close in nature to the study variable 

is not completely known in the population, or at least in a large probability sample drawn from 

it. We present a fairly general methodology for how a variable observed in a non-probability 

sample can be used to refine the estimation of totals (or means) in small population domains. 

This is the way to solve the problems of data incompleteness and bias. 

In the considered application, we integrate the OJA data with the probability sample data to 

estimate the job vacancy totals in municipalities. The overall improvement in accuracy over 

direct design-based estimates depends on how many areas are sufficiently covered by the 

non-probability sample. The application also shows how important administrative information 

commonly used in official statistics can be when utilized in small area estimation models. 
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