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SDA & the Household Budget Survey

Symbolic Data Analysis

Symbolic Data Analysis:
@ Represent and analyse data with intrinsic variability
@ In the form of sets, intervals, distributions
@ Groups/concepts VS individuals

@ Tackling data size

Relevant in Official Statistics:
o Aggregate data
@ Confidentiality
@ Combine surveys

@ Cross-border comparison
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SDA & the Household Budget Survey

Objective

Analyse the Portuguese Household Budget Survey
At aggregate level - based on location and income
Check for structure among groups

Typology based/connected to income level ?

Typology connected to location and type (Rural/Urban) ?
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SDA & the Household Budget Survey

Portuguese Household Budget Survey

@ Data from 2015 (most recent)
Proportion of total expenses

@ Ten variables:

e Food products and non-alcoholic beverages
e Clothing and footwear

e Housing, water, electricity, gas, and other fuels
e Home accessories, household equipment,
and routine household maintenance

Health

Transport

Communications

Leisure, recreation, and culture
Restaurants and hotels

Miscellaneous goods and services
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SDA & the Household Budget Survey

Portuguese Household Budget Survey

Microdata were gathered on the basis of:
@ Income class - 20 classes, based on equally-spaced quantiles
@ Region - NUTS 2 (North, Centre, Lisbon Met Area, Alentejo,
Algarve, Madeira, Azores)
@ Type of area: Predominantly Rural (PRA),
Medi-urban (MUA), Predominantly Urban (PUA)

@ 20 x 7 x 3 = 420 groups
@ Each group described by the distribution of each of the ten
variables

Original distribution for housing

Relative housing expenses
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Models for Numerical Distributional Variables

Parametric models for distributional data

Parametrization based on a central statistic and a given set of
quantiles, ¥1, ..., ¥k

Represent each distribution Yj(s;) by
@ a central statistic Cjj, typically the Median Medj; or the
MidPoint Mexit-Min;
@ the [Min, 1| range: Ryjj = v1j; — Minj
@ the [11,12[ range: Rajj = 1ojj — 1
° ...

@ the [¢)x, Max| range: Rpjj = Maxjj — 1y

Note: In the presence of strong outliers the Max (Min) may be
replaced by high (low) quantiles
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Models for Numerical Distributional Variables

Parametric models for distributional data

Household Budget Survey data:
@ Many zeros
@ Upper outliers
@ Therefore: Median & Min-Q40-Q60-Q80-Q99

Five (real-valued) indicators:
@ Median
o R1 = Q40-Min
e R2 = Q60-Q40
e R3 = Q80-Q60
@ R4 = Q99-Q80
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Models for Numerical Distributional Variables

Portuguese Household Budget Survey

Food

0.2369; {[0.00, 0.22[, 0.4; [0.22, 0.24[, 0.2
[0.24,0.28],0.2; [0.28,0.42],0.19}

0.2379; {[0.00,0.17[, 0.4; [0.17, 0.24[, 0.2
[0.24,0.30[, 0.2; [0.30,0.62],0.19}

MU-North-IncQnt3

MU-North-IncQnt4

0.0980; {[0.04, 0.09[, 0.4; [0.09, 0.10[, 0.2

PUA-Madeira-IncQnt20 [0.10,0.13[,0.2; [0.13,0.25],0.19}

P. Brito, A.P. Duarte Silva Q2024



Models for Numerical Distributional Variables

Parametric Models for distributional data

Gaussian model:

Assume that the joint distribution of the central statistic C and

the logs of the ranges R} = In(R;),¢ =1,..., m, is multivariate
Normal:
(C Ry, s Riy) ~ Nemg1yp(ps X)
Ycc Tery oo Xcry
t ® * [k * %
uw= [N%vﬂf?favﬂf?;,} D Z.lelc Zf?lRl ZRlRm
pc and pgy, £ =1,...,m - p-dimensional column vectors of the

mean values

Y cc, ZCRZ, ZR;C and ZRER;Q - p X p matrices
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Models for Numerical Distributional Variables

Parametric Models for distributional data

Model advantage:
Straightforward application of classical inference methods

@ Centres: location indicators — assuming a joint Normal
distribution corresponds to the usual Gaussian assumption

@ Log transformation of the ranges — to cope with their limited
domain

This model implies :
@ marginal distributions of the centres are Normals
@ marginal distributions of the ranges are Log-Normals

@ specific relation between mean, variance and skewness for the
ranges
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Models for Numerical Distributional Variables

Parametric Models for distributional data

However, for distributional data:

Centre ¢j; and Ranges ry;; of the value of an distributional-valued
variable are quantities related to one only variable
— should not be considered separately

So: parametrizations of the global covariance matrix —
take into account the link that may exist between centres and
log-ranges of the same or different variables
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Models for Numerical Distributional Variables

Parametric Models for distributional data

3 3 3
—_— —_—
P C

For m=2

Configuration 1

0 O 0 O
0 0 0
0 0

Configuration 2 Configuration 3~ Configuration 4  Configuration 5
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Models for Numerical Distributional Variables

Models for distributional data

@ Configurations 2 and 3 are particular cases of 1
o Configuration 4 is a particular case of of 3

o Configuration 5 is a particular case of all the others

In cases 2, 3, 4 and 5, ¥ can be written as a block diagonal matrix

o Configuration 2 : there are p blocks, all (m+ 1) x (m+ 1)

@ Configuration 3 : there are 2 blocks, one is p x p, and the
other is mp x mp

@ Configuration 4 : there are m+ 1 blocks , all p x p

e Configuration 5 : the (m + 1)p blocks are single real elements
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Models for Numerical Distributional Variables

Household Budget Survey Data

@ Original microdata with 11398 observations
@ n0 = 420 units = 20 Income classes x 7 NUTS x 3 Area

types
@ But: 133 units with degenerate intervals discarded
— n =287

Ten distributional-valued variables

Analysed from Minimum to 0.99 quantile
Location measure: Median

Three intermediate quantiles: Q40, Q60, Q80

Therefore: p = 10 variables, m = 4 intervals, 5 indicators,
w is a 50-dim vector, X is 50 x 50
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Analysis of the HBS Distributional Data
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Analysis of the HBS Distributional Data

Model-Based Clustering

K
F(xii@) = > mefi(xi; ©¢)
=1

Maximum likelihood (ML) parameter estimation —
maximization of the log-likelihood function:

Upix) =D Inf(xi; )
i=1

Expectation-Maximization (EM) algorithm

Trying to avoid local optima — each search of the EM algorithm is
replicated from different starting points

Selection of the model and number of components (K) —
Bayesian Information Criterion : BIC= —2¢(; x) + dy/n(n)
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Analysis of the HBS Distributional Data

Model-Based Clustering of the HBS

BIC values, to decide on the model and number of components:
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Number of Components
@ 4 components, Config. 5 (X diagonal), Heterocedastic model
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Analysis of the HBS Distributional Data
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Analysis of the HBS Distributional Data

Model-Based Clustering of the HBS

Reconstruced histogram Reconstruced histogram
for housing in CP1 for housing in CP2
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Analysis of the HBS Distributional Data

Model-Based Clustering of the HBS

@ Comp. 1: Urban Areas, from Lisbon Met Area, Algarve, and
Madeira
Low variation overall, High Median on Transports, Negative
skweness on Leisure

@ Comp. 2: Mainly Rural areas
High variation overall, Relatively High Median on Home Acc,
Leisure, Rest&Hotels

@ Comp. 3: 63% Rural areas, mainly North, Centre, Alentejo
High variation overall, Relatively High Median on Food,
Housing, Communications

@ Comp. 4: Urban Areas, except Lisbon Met Area and Madeira
Medium variation overall

@ Income classes similarly distributed among clusters
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Analysis of the HBS Distributional Data

Concluding Remarks

@ Parametric models specific for distributional-valued variables
@ Multivariate analysis of numerical distributional data

o Model-based clustering (finite-mixture modelling)
e Experimental results show the pertinence and usefulness of the
proposed approach

@ Also being addressed:

e Robust estimation and (distributional) outlier detection

o Other multivariate methodologies: MANOVA, Discriminant
Analysis,...

o R Package under development
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Analysis of the HBS Distributional Data

Recent Book

| Data Representation and
Exploratory Analysis

ANALYSIS OF [ Clustering and Classification
DISTRIBUTIONAL DATA [l Dimension Reduction

IV Regression and Forecasting

Sdnia Dias
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