An Innovative Framework for Analysing Official Statistics: Symbolic Data Analysis

Paula Brito⁽¹⁾ & A. Pedro Duarte Silva⁽²⁾

 $\rm ^{(1)}Fac.$ Economia, Univ. Porto & LIAAD-INESC TEC, Portugal $\rm ^{(2)}Cat\'olica$ Porto Business School & CEGE, Univ. Cat\'olica Portuguesa, Portugal

11th European Conference on Quality in Official Statistics Estoril, 4-7 June 2024

Outline

- SDA & the Household Budget Survey
- 2 Models for Numerical Distributional Variables
- 3 Analysis of the HBS Distributional Data

Outline

- SDA & the Household Budget Survey
- Models for Numerical Distributional Variables
- Analysis of the HBS Distributional Data

Symbolic Data Analysis

Symbolic Data Analysis:

- Represent and analyse data with intrinsic variability
- In the form of sets, intervals, distributions
- Groups/concepts VS individuals
- Tackling data size

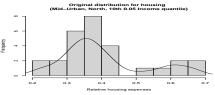
Relevant in Official Statistics:

- Aggregate data
- Confidentiality
- Combine surveys
- Cross-border comparison

Objective

- Analyse the Portuguese Household Budget Survey
- At aggregate level based on location and income
- Check for structure among groups
- Typology based/connected to income level ?
- Typology connected to location and type (Rural/Urban) ?

Portuguese Household Budget Survey


- Data from 2015 (most recent)
 Proportion of total expenses
- Ten variables:
 - Food products and non-alcoholic beverages
 - Clothing and footwear
 - Housing, water, electricity, gas, and other fuels
 - Home accessories, household equipment, and routine household maintenance
 - Health
 - Transport
 - Communications
 - Leisure, recreation, and culture
 - Restaurants and hotels
 - Miscellaneous goods and services

Portuguese Household Budget Survey

Microdata were gathered on the basis of:

- Income class 20 classes, based on equally-spaced quantiles
- Region NUTS 2 (North, Centre, Lisbon Met Area, Alentejo, Algarve, Madeira, Azores)
- Type of area: Predominantly Rural (PRA),
 Medi-urban (MUA), Predominantly Urban (PUA)
- $20 \times 7 \times 3 = 420$ groups
- Each group described by the distribution of each of the ten variables

Outline

- SDA & the Household Budget Survey
- Models for Numerical Distributional Variables
- Analysis of the HBS Distributional Data

Parametrization based on a central statistic and a given set of quantiles, ψ_1, \ldots, ψ_k

Represent each distribution $Y_j(s_i)$ by

- a central statistic C_{ij} , typically the Median Med_{ij} or the MidPoint $\frac{Max_{ij}+Min_{ij}}{2}$
- ullet the [Min, ψ_1 [range: $R_{1ij}=\psi_{1ij}-$ Min $_{ij}$
- the $[\psi_1, \psi_2[$ range: $R_{2ij} = \psi_{2ij} \psi_{1ij}$
- ...
- the $[\psi_k, Max[$ range: $R_{mij} = Max_{ij} \psi_{kij}$

<u>Note:</u> In the presence of strong outliers the Max (Min) may be replaced by high (low) quantiles

Household Budget Survey data:

- Many zeros
- Upper outliers
- Therefore: Median & Min-Q40-Q60-Q80-Q99

Five (real-valued) indicators:

- Median
- R1 = Q40-Min
- R2 = Q60-Q40
- R3 = Q80-Q60
- R4 = Q99-Q80

Portuguese Household Budget Survey

	Food	
MU-North-IncQnt3	0.2369; {[0.00, 0.22[, 0.4; [0.22, 0.24[, 0.2 [0.24, 0.28[, 0.2; [0.28, 0.42], 0.19]	
MU-North-IncQnt4	0.2379; {[0.00, 0.17[, 0.4; [0.17, 0.24[, 0.2 [0.24, 0.30[, 0.2; [0.30, 0.62], 0.19]	
PUA-Madeira-IncQnt20	0.0980; {[0.04, 0.09[, 0.4; [0.09, 0.10[, 0.2 [0.10, 0.13[, 0.2; [0.13, 0.25], 0.19]	

Gaussian model:

Assume that the joint distribution of the central statistic C and the logs of the ranges $R_{\ell}^* = ln(R_{\ell}), \ell = 1, \ldots, m$, is multivariate Normal:

$$(C,R_1^*,\ldots,R_m^*)\sim N_{(m+1)p}(\mu,\Sigma)$$

$$\mu = \begin{bmatrix} \mu_{C}^{t}, \mu_{R_{1}^{*}}^{t}, \dots, \mu_{R_{m}^{*}}^{t} \end{bmatrix}^{t}; \Sigma = \begin{pmatrix} \Sigma_{CC} & \Sigma_{CR_{1}^{*}} & \dots & \Sigma_{CR_{m}^{*}} \\ \Sigma_{R_{1}^{*}C} & \Sigma_{R_{1}^{*}R_{1}^{*}} & \dots & \Sigma_{R_{1}^{*}R_{m}^{*}} \\ \dots & \dots & \dots & \dots \\ \Sigma_{R_{m}^{*}C} & \Sigma_{R_{m}^{*}R_{1}^{*}} & \dots & \Sigma_{R_{m}^{*}R_{m}^{*}} \end{pmatrix}$$

 $\mu_{\it C}$ and $\mu_{\it R_\ell^*}, \ell=1,\ldots,m$ - p-dimensional column vectors of the mean values

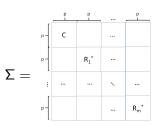
$$\Sigma_{CC}, \Sigma_{CR_\ell^*}, \Sigma_{R_\ell^*C}$$
 and $\Sigma_{R_{\ell 1}^*R_{\ell 2}^*}$ - $p imes p$ matrices

Model advantage:

Straightforward application of classical inference methods

- Centres: location indicators → assuming a joint Normal distribution corresponds to the usual Gaussian assumption
- Log transformation of the ranges → to cope with their limited domain

This model implies:


- marginal distributions of the centres are Normals
- marginal distributions of the ranges are Log-Normals
- specific relation between mean, variance and skewness for the ranges

However, for distributional data:

Centre c_{ij} and Ranges $r_{\ell ij}$ of the value of an distributional-valued variable are quantities related to one only variable

 \rightarrow should not be considered separately

So: parametrizations of the global covariance matrix \rightarrow take into account the link that may exist between centres and log-ranges of the same or different variables

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Configuration 5

Models for distributional data

- Configurations 2 and 3 are particular cases of 1
- Configuration 4 is a particular case of of 3
- Configuration 5 is a particular case of all the others

In cases 2, 3, 4 and 5, Σ can be written as a block diagonal matrix

- ullet Configuration 2 : there are p blocks, all (m+1) imes (m+1)
- Configuration 3 : there are 2 blocks, one is $p \times p$, and the other is $mp \times mp$
- ullet Configuration 4 : there are m+1 blocks , all p imes p
- Configuration 5 : the (m+1)p blocks are single real elements

Household Budget Survey Data

- Original microdata with 11398 observations
- n0 = 420 units = 20 Income classes × 7 NUTS × 3 Area types
- Ten distributional-valued variables
- Analysed from Minimum to 0.99 quantile
- Location measure: Median
- Three intermediate quantiles: Q40, Q60, Q80
- Therefore: p = 10 variables, m = 4 intervals, 5 indicators, μ is a 50-dim vector, Σ is 50×50

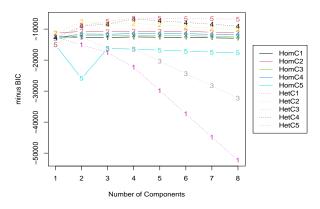
Outline

- SDA & the Household Budget Survey
- Models for Numerical Distributional Variables
- 3 Analysis of the HBS Distributional Data

Model-Based Clustering

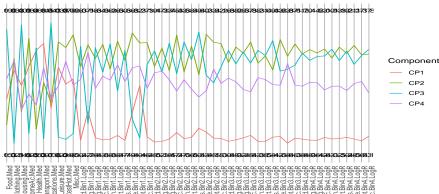
$$f(x_i; \varphi) = \sum_{\ell=1}^k \pi_\ell f_\ell(x_i; \Theta_\ell)$$

Maximum likelihood (ML) parameter estimation \rightarrow maximization of the log-likelihood function:

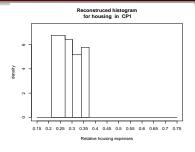

$$\ell(\varphi; \mathbf{x}) = \sum_{i=1}^{n} \ln f(\mathbf{x}_i; \varphi)$$

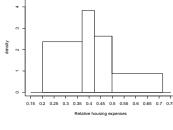
Expectation-Maximization (EM) algorithm

Trying to avoid local optima \rightarrow each search of the EM algorithm is replicated from different starting points

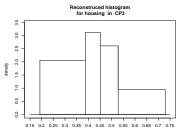

Selection of the **model** and **number of components** $(K) \rightarrow$ Bayesian Information Criterion : BIC= $-2\ell(\hat{\varphi}; \mathbf{x}) + d_{\varphi} \ln(n)$

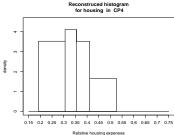
BIC values, to decide on the model and number of components:




ullet 4 components, Config. 5 (Σ diagonal), Heterocedastic model

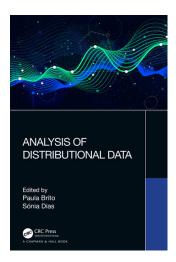
Parallel Coordinate Plot


Clothing Me House Chair Me House Cha



Reconstruced histogram

for housing in CP2


Q2024

- Comp. 1: Urban Areas, from Lisbon Met Area, Algarve, and Madeira
 Low variation overall, High Median on Transports, Negative skweness on Leisure
- Comp. 2: Mainly Rural areas
 High variation overall, Relatively High Median on Home Acc,
 Leisure, Rest&Hotels
- Comp. 3: 63% Rural areas, mainly North, Centre, Alentejo High variation overall, Relatively High Median on Food, Housing, Communications
- Comp. 4: Urban Areas, except Lisbon Met Area and Madeira Medium variation overall
- Income classes similarly distributed among clusters

Concluding Remarks

- Parametric models specific for distributional-valued variables
- Multivariate analysis of numerical distributional data
 - Model-based clustering (finite-mixture modelling)
 - Experimental results show the pertinence and usefulness of the proposed approach
- Also being addressed:
 - Robust estimation and (distributional) outlier detection
 - Other multivariate methodologies: MANOVA, Discriminant Analysis,...
 - R Package under development

Recent Book

- I Data Representation and Exploratory Analysis
- II Clustering and Classification
- III Dimension Reduction
- IV Regression and Forecasting