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Abstract 

The goal of the present study is to show that the standard methodology of official statistics may 
be enriched and its quality may be improved by applying the most up-to-date developments in 
theoretical and applied statistics. The progress of computational tools and resources in recent 
years make it possible to apply, in a routinely and timely manner, advanced tests, models and 
algorithms which have been previously restricted to academic or industrial purposes. 

We focus on several stages of the statistical production and illustrate these ideas with 
concrete applications at Statistics Iceland regarding: 

(i) Bayesian rule extraction for data validation processes. Data application: comparing 
domain expert knowledge-based rules and results of rule mining. 

(ii) protecting (statistical disclosure control of) tabular data using Bayesian modelling 
and cryptography inspired methods. Data application: publishing detailed census 
grid data. 

(iii) quantifying uncertainty of machine learning classification algorithms while adding 
interpretability features for transparent and complete communication of results. 
Data application: random forests and neural networks for demography applications.  

One of the main conditions for employing any of these methods is to be able to quantify their 
performance and to report on the uncertainty in results associated to: data variability, model 
fit/complexity, distributional differences between training and predicting data, 
measurement/register errors or interactions of all these types of errors. We show that these 
tasks can be achieved for the most complex models and exemplify with results for the cases 
described above. 

Keywords: data validation, statistical disclosure control, machine learning 

1. Introduction  

In this paper, we argue that a critical measure of quality in official statistics has several key 

dimensions: employing accurate data, producing reliable and privacy preserving statistics, 

while using advanced, up-to-date methods in a scientific way. This requires thorough 

evaluation of the performance of these methods and of the uncertainty of their results, as a 

main step whose importance is increasing with their complexity. The more advanced the 

models or machine/deep learners are, the more rigorous the evaluation, testing, calibration 

and uncertainty measurements should become. 



 

 

 

  

The general principles driving our choice and implementation of methods are outlined in 

section 2. These are exemplified by concrete problems and proposed new solutions 

concerning data validation (section 2.1.), statistical disclosure control (SDC), discussed in 

section 2.2. and detailed case studies (section 2.3) where we recommend types of reporting 

the output uncertainty. This last step is in our opinion essential. While adding useful information 

to output and maintaining transparency in a rigorous way, it is often overlooked in literature.  

Interpretability and assumption testing regarding data or models play important roles and 

deserve to be addressed systematically as well. We use/produce open-source 

implementations of these steps. 

2. Methods and illustrative examples 

The methodology we propose follows in fact the standard mathematical statistics approach to 

model fitting, model selection, out of sample prediction and uncertainty evaluation: we show 

that this general, scientific framework can be adapted and applied for the special cases of new 

data validation, disclosure control and inference based on complex models/algorithms. 

Remarkably, all solutions have several standard stages:  

(i) exploring and describing the data (analysing distributions, correlations, clustering, 

outliers)  

(ii) training a set of algorithms / fitting complex models, measuring their performance 

according to well defined metrics and identifying their optimum regimes based on the 

prediction goals (e.g. classification for census, survey optimization, or forecasting with 

hierarchical Bayesian models)  

(iii) quantifying and reporting the uncertainty associated with the predictions, including:  

o  the uncertainty associated with the variability in the training data.  

o the uncertainty due to the model fit and model complexity issues.   

o errors due to distributional differences between training and predicting data 

sets. 

o measurement errors  

o errors due to interactions between model and data-dominated uncertainty.  

(iv) describing the results in simple terms, by using interpretability tools which allow the 

user to understand the relations between the predictions and the features/variables 

involved in the AI/ML algorithm or model. This stage usually involves for instance 



 

 

 

  

measures of feature importance, surrogate models in the case of complex classifiers 

or conditional effects and posterior distribution checks as in the case of hierarchical 

Bayesian models.  

2.1. New data validation methods 

We have analysed in a recent project the performance of the data validation approach based 

on confronting a data set with a set of rules (constraints) usually defined according to general 

requirements concerning data structures and expert knowledge. This is usually followed by 

identifying the fields in the data which need to be modified/imputed. For this purpose, we have 

employed well-known R-packages (see (van der Loo, 2021) and (van der Loo, 2024)) with 

good performance and studied (Gislason, 2019) the dependence of running time of the error 

identification as a function of the number of errors per record, rule category, sub-categories of 

data. 

This classical approach is very systematic, it has a clear interpretability although the two-

step structure (which includes error location and error correction) is often difficult to solve in a 

general way and may requires additional transformations of the problem.  

New solutions are emerging and show promising results, though. They are based on the 

premise that most of the records and fields of a data set are valid and only a minority is 

anomalous.  Consequently, we can fit a model or train an algorithm using the whole body of 

data in order to identify association rules and/or errors and to infer needed field values 

accordingly. 

This implies that two well-known whole classes of statistical methods may be employed for 

solving this very problem: 

(i) ML based discovery of association rules. We are employing Apriori and eclat 

algorithms as typical examples (see e.g. (Agrawal, 1993) and (Hahsler, 2005)) 

with the goal of rule mining and selecting new and meaningful rule sets. Testing 

these sets against the traditional rule repositories is essential and ongoing.  

(ii) Bayesian modelling (previously part of the imputation stage only) may be used for 

simultaneous detection and correction of errors, as shown in (Kim, 2015) for 

continuous microdata and in (Manrique-Vallier, 2017) for categorical data.  

The features and advantages of a Bayesian approach suggest that one could even add 

privacy protection to this process, at the same time. This step has not yet been completed, 

according to our knowledge. At the same time, mining validation rules can exploit Bayesian 

methods (see e.g. (Tian, 2013)) and select the optimum set as defined by support, confidence 



 

 

 

  

and lift. Updating and testing the available (R, open source) software for this purpose is still 

ongoing. The prospects are optimistic since in recent years methods as the ones mentioned 

above have become a realistic choice in practice in terms of running time, in addition to their 

theoretical advantages, due to faster computational resources and easier to optimise software.  

 

2.2. New SDC methods 

We describe in this section a typical case study, i.e. the publication of 2021-Census data, for 

the purpose of simplifying the discussion. When regarded through the Census-grid(s), Iceland 

looks like a “virtual archipelago”, i.e. a large set of disconnected populated cells, many of them 

with a very small number of inhabitants, separated by large unpopulated areas. This means 

that even aggregated data for such cell-systems pose a high disclosure risk when published.  

The main condition we formulate for any valid data protection method is that it should 

preserve the relevant distributions over regional (and more, e.g. urban/rural) divisions. An 

additional condition has been imposed, namely producing “credible results”. This has been 

translated into mathematical terms by the requirement to preserve the (approximate) location 

of certain outlier type of characteristics/groups which are public knowledge. 

We tested several procedures for disclosure control of aggregated data and evaluated 

their best performance, for the case of our Census grid data. The advantage of the selected 

and newly proposed method, which is based on swapping of data between grid-cells (and not 

only individuals or households) is that it could be automatically and straightforwardly applied 

to any tabular dataset and that it preserves consistency at chosen levels of aggregation.  The 

open code and results are reported/linked on the repository1  of open code which already 

includes the information concerning our project on SDC for the small output area system and 

preliminary code for the new method evaluation.  

As verified in a previous study (Calian, 2020), we can confirm that the most critical 

stages in applying and evaluating an SDC method are: the identification of risk variables and 

the risk-utility analysis. The former is a rather subjective process which is based on legal, 

cultural and information types of conditions (Hunderpool, 2012). The latter is the object of an 

interesting statistical problem, i.e. evaluating the effect of multivariate transformations (as 

implicitly defined by all standard methods) on multivariate data distributions. Measures for both 

risk and utility (standard, information based) are used to define the parameters of the optimum 

regime of the employed SDC method.  

 

1 https://github.com/violetacln/testingSDCtools  

https://github.com/violetacln/testingSDCtools


 

 

 

  

The results were compared with the ones obtained by using the SDC methods in the 

standard way. In the previous pilot-study we have already tested the recommended methods 

for the newly built system of small output areas albeit not for the grid-system, by using data of 

the 2011 Icelandic Census.  Evaluation and testing of the newly proposed solution consist of 

the following standard steps: (i) identifying the cells with risk of attribute disclosure, 

identification, and differencing risk (ii) applying the SDC method based on cell-ID swapping, 

for multiple values of the critical parameters (iii) evaluating the residual risk and information 

loss on the output dataset (iv) comparing the results with the record swapping and cell-key 

methods of data protection. The implementation of the testing, evaluation and risk-utility 

measurement steps makes use of several R-packages from the ensemble of SDC-tools2. 

However, new directions for protecting data are currently under evaluation:  

(i) using Bayesian estimates for generating synthetic data.  

(ii) using deep-learning and/or cryptography inspired methods such as adversarial 

neural networks. 

(iii) using differential privacy and its Bayesian variant which can guard against difficult 

scenarios built on deep learning. 

The probability of an intruder correctly identifying an individual or individual attributes by 

using a released data set is at the core of risk definition. A Bayesian approach may be used to 

calculate predictive probabilities and disclosure risk under model uncertainty (with e.g. model 

averaging) while using joint data distributions (as initiated for instance in (Forster, 2005) since 

particularly suitable to this kind of reasoning.  

We emphasize here the need of making decisions for official statistics regarding the 

possibility of future use of differential privacy which (citing from (Dwork, 2014).): “describes a 

promise, made by a data holder, or curator, to a data subject: ‘You will not be affected, 

adversely or otherwise, by allowing your data to be used in any study or analysis, no matter 

what other studies, data sets, or information sources, are available.’ At their best, differentially 

private database mechanisms can make confidential data widely available for accurate data 

analysis, without resorting to data clean rooms, data usage agreements, data protection plans, 

or restricted views.” One should also keep in mind the corollary to a well-known information 

law which states that too many accurate answers to too many questions will destroy privacy 

protection (as shown in the same reference) and proceed accordingly. Limitation, as opposed 

to elimination of disclosure, thus preserving utility and accuracy, by using differential privacy is 

 

2 https://github.com/sdcTools  

https://github.com/sdcTools


 

 

 

  

the pragmatic goal for official, health, technological institutions which use or even stream data 

and open source tools and libraries (such as Google, Apple, US Census Bureau3). 

2.3. Uncertainty and performance evaluation for complex models/algorithms 

Using novel and complex models or even publishing classical statistical estimates should fulfil 

the conditions listed at the beginning of this section: verifying data and model assumptions, 

evaluating the results’ uncertainty due to the data variability and data errors, as well as to the 

uncertainty in model fit and choice and interaction of all these factors. 

Publishing this type of results routinely, as opposed to point estimates and unique 

values of performance measures is a best practice which becomes even more important when 

using advanced tools and models/learners. 

We exemplify this best practice in what follows. Statistics Iceland decided to estimate 

the true resident population at any point in time, based on combining multiple register data and 

formulating the overcounting due to lack of de-registration issue as a binary standard 

classification problem (Calian, 2023 and associated R-code repository4). For this purpose, 

multiple machine learning algorithms were trained on data with known outcome and their 

performance was evaluated according to many standard measures as shown in detail in the 

paper cited above. The preliminary exploratory and data mining stages were used for validating 

the set of attributes included in the models.  

The results of the evaluation of algorithm performance, tuning and optimisation (i.e. 

choosing critical parameters as a function of the analysis goal) as well as the results of the 

predictions were communicated together with their uncertainty and variability measures. 

The distributions of all standard performance metrics were obtained by resampling (k-fold 

cross-validation). We show in Figure 1 an example of two classifiers and distributions of two 

such metrics. More complete results are included in the paper. To the usual set of metrics, i.e. 

Sensitivity (true positive rate, TPR), Specificity (true negative rate, TNR), accuracy (proportion 

of cases correctly classified, out of the total number of cases), the harmonic mean F1 of 

sensitivity and specificity, the Youden’s J statistics or the Kappa statistics (especially for 

comparing classifiers and using random chance as a baseline), we added a constraint 

reflecting the maximum admissible total population error.  

 

3 https://neptune.ai/blog/using-differential-privacy-to-build-secure-models-tools-methods-best-

practices  

4 https://github.com/violetacln/SLOPA  

https://neptune.ai/blog/using-differential-privacy-to-build-secure-models-tools-methods-best-practices
https://neptune.ai/blog/using-differential-privacy-to-build-secure-models-tools-methods-best-practices
https://github.com/violetacln/SLOPA


 

 

 

  

Figure 1: Uncertainty of typical performance measures for two classifiers (random forest and Bayesian 

logistic regression) reflecting training data and model variability 

 

This inherent variability is manifest in the tuning and optimisation stages for any of the ML 

classifiers. For instance, the one we chose, i.e. random forest, has a classification probability 

threshold (critical value) to be selected for providing best results. Figure 2 shows the 

performance uncertainty and how much it varies when tunning the threshold values. 

Figure 2: Confidence bands of performance measures of a random forest classifier reflecting training 

data and model variability, as functions of critical threshold values 

 

The consequence of correctly measuring the uncertainty associated with the model/algorithm is 

reflected in the confidence/credible intervals of the predicted outcome, i.e. the predicted number of 

individuals with zero/one residence status. A cautionary remark is in order: the model uncertainty is 

not reflected at this stage but only its stochastic variability, which is captured by the resampling 

techniques. Model averaging could reflect it though. 

We exemplify the uncertainty in the predicted outcome for the case of applying another classifier 

to the same problem as above, namely one based on expert-knowledge decision-trees, as proposed 



 

 

 

  

by the demography experts at Statistics Iceland. They identified the set of optimum critical values for 

the rules included into their algorithm and Figure 3 shows the distribution of the predicted outcome 

due exclusively to data variability, conditional on this set of optimum values. 

Figure 3: Distribution of classification results reflecting data variability for optimum regime 

-  

However, if the critical values included in their proposed decision tree were not fixed, 

the full variability of the model outcome is shown by a distribution like the one in Figure 

4, i.e. much broader confidence interval and a much more uncertain result. This type 

of result can be used for selecting on the best regime of their algorithm. 

Figure 4: Distribution of classification results reflecting both data and model variability 

 

Yet an additional option for solving the same problem is offered by hierarchical models and 

we are testing this approach at the present time. It has the great advantage that it can make 

use of the whole population register data for training instead of the rather noisy and not very 

big survey data used for the ML algorithms. It can also capture well the data correlations and 

interactions. In the case of Iceland, where small numbers are frequently recorded, a good 



 

 

 

  

choice for solving such problems consists of using hierarchical Bayesian models with Gaussian 

process priors (for unknown nonlinear, smooth functions) which can be learned from data as 

we have already tested for forecasting purposes in (Calian 2023b and open-code repository5). 

3. Conclusions 

We showed in this paper that statistical products based on new data science technologies can 

be treated according to robust and transparent methods for measuring, controlling and 

reporting uncertainty while optimising for performance. The only limitations to such a process 

may arise from insufficient computational resources, input data or incomplete 

domain/interpretation knowledge. 
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