Pegasus AeroGroup

Protecting people and the environment since 1966

8th International Wildland Fire Conference May 18th 2023, Porto

Pegasus: A global speciallist in aerial firefighting

- Company background
- Operations and strategy
- Safety and training
- Environmental commitment

Aerial firefighting benefits quantified

- Objectives
- Methods
- Results (pilot experience)

The vision of Pegasus about aerial firefigling

- Public service model
- The fleet mix
- Air service concept

A global speciallist in aerial firefighting

Pegasus Aero Group: Protecting people and the environment since 1966

OUR BACKGROUND

FLIGHT VOCATION SINCE 1966

The XX century

The origins of the company

966-1999

1966: Established by Sebastian Almagro in Palma del Río, Spain

1988: Start of forest firefighting operations

1991: Start of HEMS operations

1999: Start of Aviation technitians training activity.

Specialisation and international presence

Fighting wildfires in two continents

2000: Start of pilots training activity

2000: First operations in Chile in collaboration with local operators.

2005: Establishment of the first group Branch in LATAM: FAASA Chile

2006: Joint Venture with Era Helicopters

2007: New corporate headquarters and principal Maintenance facility in Palma del Río

2008: Second facility in Spain with operations and Maintenance capabilities.

2011: In collaboration with Indra ® development of SEILAF, first full flight simulator in the world for aerial firefighting misión training.

Inorganic growth, volume and diversification

Sustained growth through M&As and JVs

015-2022

2016: Acquisition of Calquin, second branch in Chile

2016: Acquisition of Elitellina in Italy enlarging aerial works market presence

2017: Acquisition of Elifly in Italy

2017: Acquisition of HASA in Spain, incorporating SAR capabilities and a branch in Uruguay

2018: Start of operations in Portugal.

A WHOLISTIC APPROACH TO AERIAL SERVICES

A broad set of services aimed to support emergencies and protect the environment from the air

AERIAL OPERATIONS

TRAINING

EASA 147 training

Pilots & AMTs

- Pilots & Mechanics

MAINTENANCE

- •Owned and 3rd party

EASA 145

Line (ops)

Integrated services

Broad set of aircraft

- Covering all segments
- Mission equipped, high tech.
- Multi purpose configuration

Experienced crews & airborne personnel

• Firefighters, rescuers, hoist

Pilots & AMTs

ops, medical.

Simulation based mission training

• Ab initio & Type Rat.

- Incident command
- Aerial coordinators

Airborne personnel

 Firefighting brigades, rescuers, hoist ops, medical Leonardo® CSF

• Base Maintenance

Overhaul capabilities

Engineering services

- Modifications and STCs
- Design and production
- Refurbishing

- Pilots

A complete set of aircraft in all segments, from light to heavies, fix and rotary wing, set for the missions, multipurpose configured, exhaustively maintained, safe and efficiently operated

<u>Kamov</u>

• Engine: Klimov TB3-117BMA

• Speed (knots): 130

Flight range: 2h 15m/570km

Transport capacity: 13+2

Loading capacity: 4.500 l

Number of aircrafts: 4

• Engine: Biturbina con Sistema N1

• Techo de crucero: 6.000m

Flight range: 4h

• Transport capacity: 12+2

Loading capacity: 1.600 I

Number of aircrafts: 4

• Engine: P&W pt63-3b

• Speed (knots): 130

• Flight range: 2h

Transport capacity: 11+2

· Loading capacity: 1.300 l.

Number of aircrafts: 15

Bell 412

Augusta A 119 Koala

Engine: P&W PT6B-37 A 1.002 CV

• Speed (knots): 150

• Flight range: 3h 50m

• Transport capacity: 7+1

· Loading capacity: 1.000 liters

· Number of aircrafts: 24

Airbus H125

Engine: 1X847 HP

• Speed de crucero: 235km/h

Flight range: 4h/665km

• Transport capacity: 6

External payload: 1.300 kg

Number of aircrafts: 40

AT802

Engine: P&W PT6A - 67AG - 1.350 H.P.

Speed (mph): 167

• Flight range: 5h

Transport capacity: 2

• Storage capacity: 3.100 liters

• Number of aircrafts: 17

AT 502

• Engine: P&W PT6A-34AG

• Speed (mph): 145

• Flight range: 2h 30m

• Transport capacity:2

• Storage capacity: 1.893 liters

· Number of aircrafts: 1

Fleet segments & sample mission configuration

Customer

• Emergencies Canary Islands, Spain

Missions

Firefiahtina

•Search and Rescue (mountain and shore)

Surveillance

Cargo

MedEvac

Configuration and equipment

• Bell 412 EP

• Up to 12 battle seats

• IFR equipped

Radioaltimeter

Carao hook

• Bamby Bucket ® / Foam dispenser

• WSPS

• ELT

• Marine and terrestrial radio ea.

•Search light

Emergency floats

• Rescue Hoist

•360° camera

• GPS Tracking system

• Airborne mobile phone detection

Light, 68

Mid, 39

PEGASUS FOOTPRINT IN TWO HEMISPHERES

Management, maintenance and operational support for customers through locations and permanent structures in Southern Europe and South America

(Concepción, CL). Maintenance center and operational support for service delivery in Chile and Peru.

(Palma del Rio, ES). Corporate services. Main aircraft maintenance center. Pilots and AMTs training

Pegasus Matilla

(Valladolid, ES) Maintenance and operations for the north or Spain

CTCA-SEILAF

(Seville, ES): Integrated simulation facility for firefighting pilots, incident command managers and aerial coordinators. Simulators facility provides training services for fire-fighting helicopter pilots through its specialized fire-fighting simulators.

Pegasus South America

(Concepción, CL). Maintenance center and operational support for service delivery in Chile and Peru

Foresbal – Pegasus Uruguay

(Melilla, UR). Maintenance center and operational support for service delivery in Uruguay.

Elitellina – Pegasus Italy

(Lombardy, IT). Maintenance centre and operational support for service delivery in Italy

HOW WE OPERATE: THE COUNTER - SEASON MODEL

MAKING CONTINUOUS AN INTRINSICALLY SEASONAL ACTIVITY

Pegasus is capable to timely deploy aircraft of all segments – from light to heavies – crewed with highly trained personnel in two hemispheres generating benefits in technical – economical efficiency and safety

Cost drivers(1)

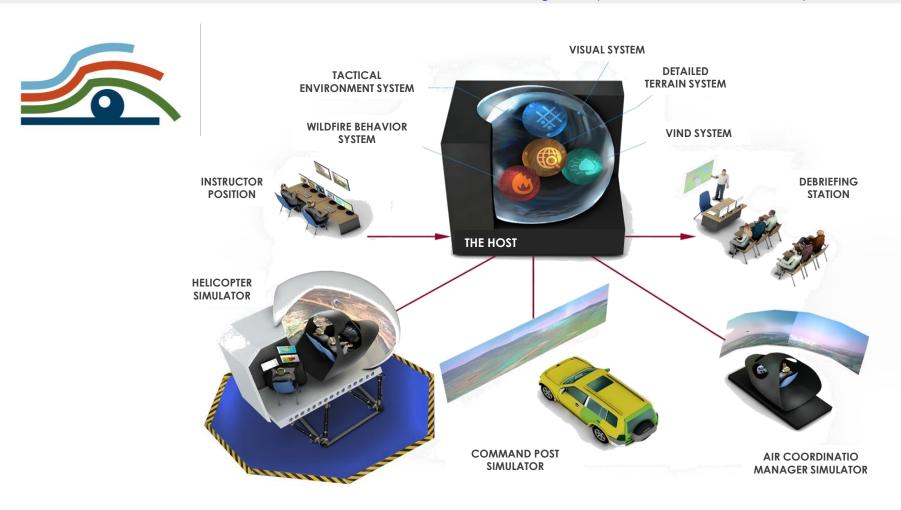
Fix and variable

- Most of **operational cost is fix** including aircraft availability, administration and crew
- Seasonal operations result poorly efficient economically wise
- Low flight time (~120 hours) activity results in **weak opportunity to gain experience** for crews
- Key skills developed: capacity planning and international shipping
- The "counter seasonal model", resulting in:
 - **Highly competitive** value proposal for customers
 - Improved safety standards in operations
- Performed by Pegasus in a worldwide **unique scale**:
 - 60-70 aircraft per year in all segments of aircraft.
- Why Southern Europe and LATAM?
 - Convenient and available shipping modalities
 - Seamless forest fire characteristics, preferred fleets, firefighting systems, etc.
 - Longer fire seasons
 - Maximum efficiency & synergies
 - Improved safety

TO WHOM WE DELIVER SERVICES

PUBLIC ADMINISTRATION AND LARGE CORPORATIONS MANAGING EMERGENCIES

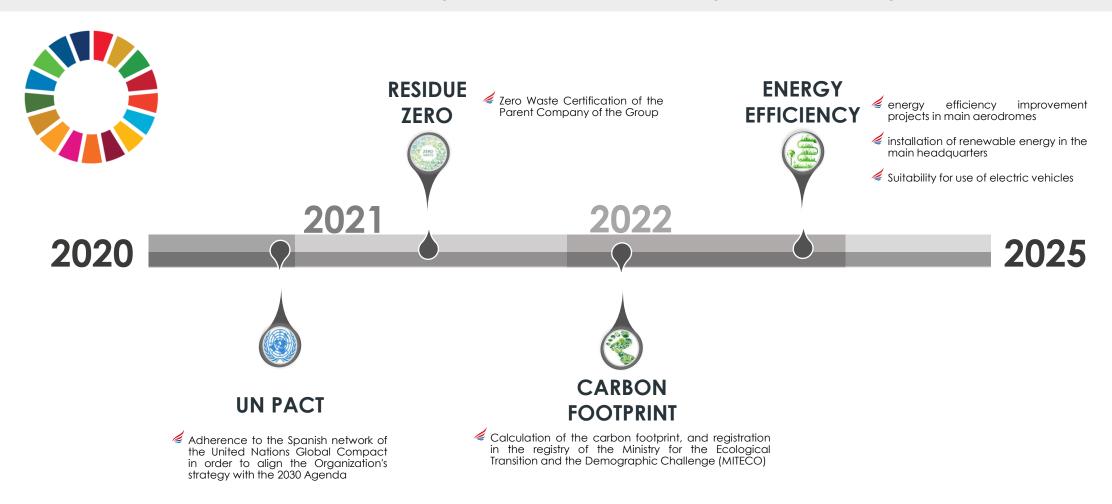
Public and public entities in charge of people safety in emergencies and the protection of environmental resources


Customer	Services	Fleet					
Ministry Environment	Firefighting	AT802s					
Canary Islands	Firefighting, SAR, Rescuers, Hoist ops, Surveilance.	B412 EP					
Andalucía	Firefighting	AW119 Koala, Ka32A11BC					
Castilla La Mancha	Firefighting	AW119 Koala, AS350B3	Babcock, 34%	Pegasus, 27%	Elliance	18%	is ع
Castilla y León	Firefighting	B212, AW119 Koala	Basesak, 5170	1 090303, 27 70	Linarico	1070	,
La Rioja	Firefighting, SAR, Firefighters, Rescuers, Hoist ops., Training.	B412 EP					
Cataluña	Firefighting, Civil Protection, SAR	AS350B3, AT802					
Força Aerea	Firefighting, Maintenance, Training.	B412, B212, AW119 Koala					
Madeira	Firefighting, SAR, Surveillance	B412			Description		
Lombardia	Firefighting	AS350B3			Pegasus (Elitellina),	HeliWest,	
Sardegna	Firefighting	AS350B3	Other, 32%	E+S, 24%	14%	14%	ı
Toscana	Firefighting	AS350B3					
Various	Laboro aereo	AS350B3	*				
Arauco	Firefighting, Air Coordination, Firefighting, Consultancy, ground logistics.	AW119 Koala, Ka32A11BC					
Mininco	Firefighting	B412, B212					
CONAF	Firefighting	B212, AS350B3			M. Ridao,	Elia	
Foresbal	Firefighting	AW119 koala	Pegasus, 41%	Other, 21%	12%	9%	

SEILAF - "WILDFIREXPERIENCE"

COMPREHENSIVE FIREFIGHTING MISSION TRAINING

A unique training facility in the world where pilots, incident command managers and air coordinators gain experience in an immersive synthetic wildfire scenario with AI capabilities



ENVIRONMENTAL STRATEGIC PLAN

The Organization has defined the following environmental strategic lines in its 2020-2025 Strategic Plan

We do what is necessary?

Impact on emissions

Total Flight hours

34203,51FH

Emissions

18434, 34 tn CO₂

Indicator Emissions/flight hours 0,54 tn CO_{2 /HV}

Avoided emissions

Use of flight simulators

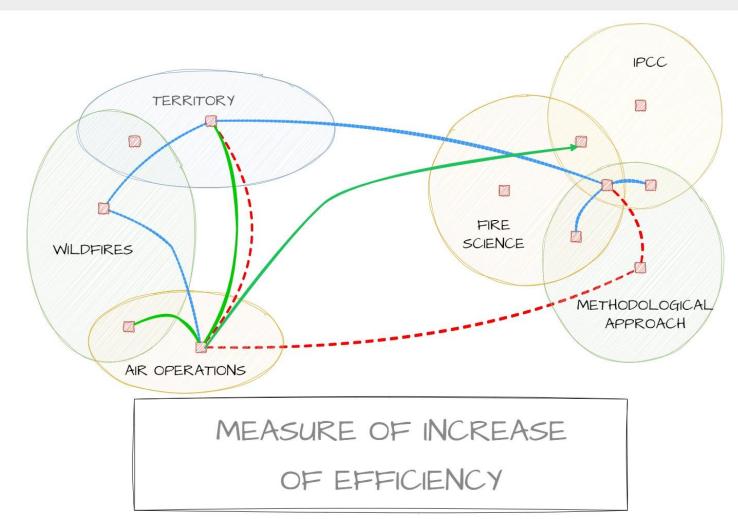
- •2.500 flight hours
- •2.657 tn CO₂ avoided

Use of renewable energy

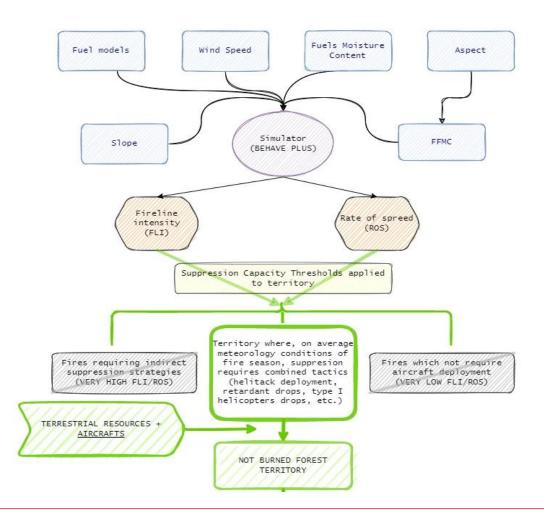
- 48.190 kwh produced
- 12.433 tn CO₂ avoided

Sustainable Aviation Fuel

•5% reduction in total emissions generated per flight hours


Aerial firefighting benefits quantified

A methodology for quantifying carbon emissions prevented by the increase in efficiency provided by firefighting aircraft


- Generate a methodology following IPCC rules and procedures and fire science, applicable at the regional scale at global level.
- Establish the thresholds of increase in firefighting efficiency provided by air means, according to the territorial variables that define fire behaviour.
- Quantify this increase in terms of prevented GHG emissions by biomass protection achieved.

 Fuel models were linked with fire behaviour and the IPCC methodology to calculate emissions produced by natural disturbances.

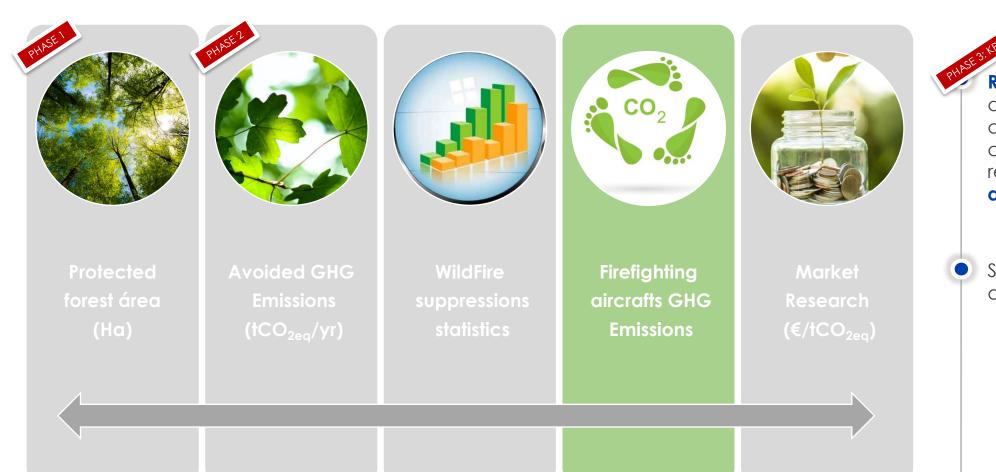
- Thresholds of fire behaviour where aircrafts provide a real increase on efficiency were identified, and related with territory and fuels.
- The difference between the **potential burned** area without aircrafts and the **real burned** area was calculated, and consequently, the **biomass saved**.

Through IPCC GHG emissions calculation rules, the protected biomass was converted into avoided emissions

NOT CONSUMED BIOMASS BY FIRELINE

PRODUCTS

CARBON IN SOIL


006 IPCC Guidelines for National Greenhouse Gas Inventories

Equation 2.27 Estimated greenhouse gas emissions from fire $L_{\rm fire} = {\rm A^*M_B^*C_f^*G_{ef}^*10^{.3}}$

GHG NOT- EMISSION (SOURCE)

INCREASE ON CARBON RESERVOIR (SINK)

Real emissions by air operations deployed were calculated and related with avoided emissions.

Several **KPI** were designed.

RESULTS (PILOT EXPERIENCE)

A methodology for quantifying carbon emissions prevented by the increase in efficiency provided by firefighting aircraft

RESULTS (PILOT EXPERIENCE)

A methodology for quantifying carbon emissions prevented by the increase in efficiency provided by firefighting aircraft

The Andalusian region results

Overall inform	ation
Total area of Andalusia (ha)	8.760.377
Forest area – (ha)	6.413.599
Percentage of forest area.	73%
Area resulting on average	FLI < 10.000kw/m
Firesheds	8.968,00
Area (ha)	6.163.796
% over forest area	99,7%
Firesheds Area (ha)	8.968,00 6.163.796

Variable	Ud	Result/year
Wildfire events with air operations	ud	252
Burnt area	ha	2.706,25
Potential burnt area without air operations	ha	172.952,25
Saved area	ha	170.246,00
Flight hours on air operations	h	3.347,58
GHG emissions – air ops	tCO2eq	3.675,33

RESULTS (PILOT EXPERIENCE)

A methodology for quantifying carbon emissions prevented by the increase in efficiency provided by firefighting aircraft

The Andalusian region results

KPIs	Ud	Result	
GHG emissions prevented / emitted	adimensional	567	
Net balance of GHG emissions	tCO2eq/year	2.081.689	
Air operations performance in terms of carbon saveguard	tCO2eq/hour of flight	622	

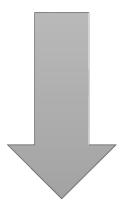
KPIs	Ud	Price of carbon	credit(€/tCO2)	Result
Face and a short of	6	Current	6,30 €	13.114.640,81 €
Economic potential	₹	Proyection	100,00 €	208.168.901,82 €

The vision of Pegasus about aerial firefigting

Public service model

Aircraft fleet mix

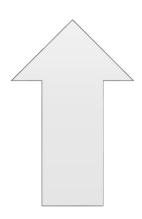
Services integration



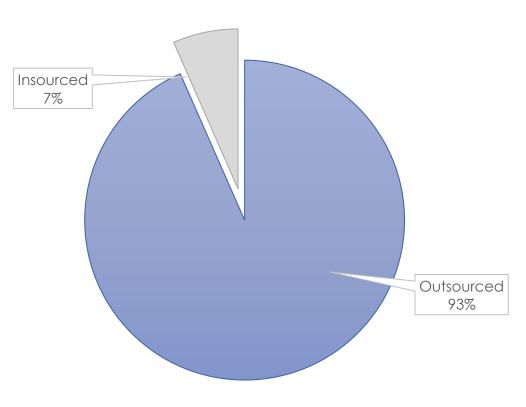
AIRCRAFT & CREWS: IN - SOURCE VS OUT - SOURCE

Firefighting services <u>shall always remain public</u>, granted by states but, how to source aircraft and crews?

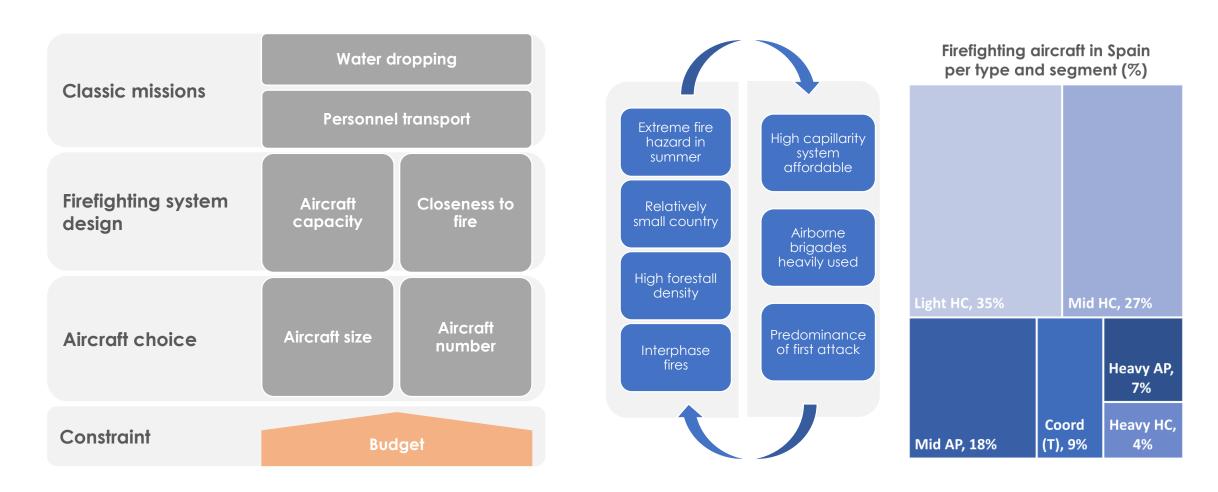
States buying and operating aircraft or relying in the private industry?



In sourcing


- State control (?)
- •Own resources more reliable (?)
- Long term budget allocation (?)
- Public service preferrable (?)

- Adaptability
- Budget optimization
- Top industry options anytime
- Best practises adoption
- •Territory mgmt. Local dev.



The case of Spain (273 aircraft in operation)

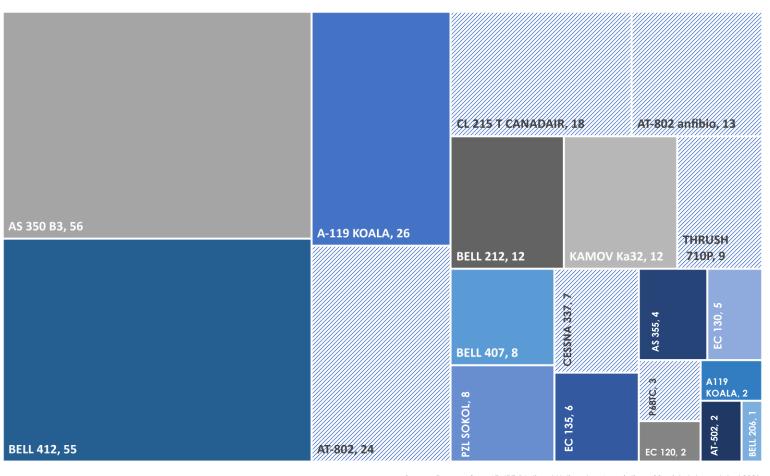
Source: Pegasus from ATAIRE (National Helicopters Association of Spain) data updated 2021

Weather, topography and fuel determining the firefighting strategy and subsequently the fleet mix

AERIAL MEANS DEDICATED TO FOREST FIREFIGHTING

NOT ONLY A DECISION IN THE SEGMENT BUT ALSO ON THE SPECIFIC AIRCRAFT MODEL

Use of 'industry standards' for the vast majority of interventions and 'specialised niche platforms' for non routine operations demanding extra features or performance

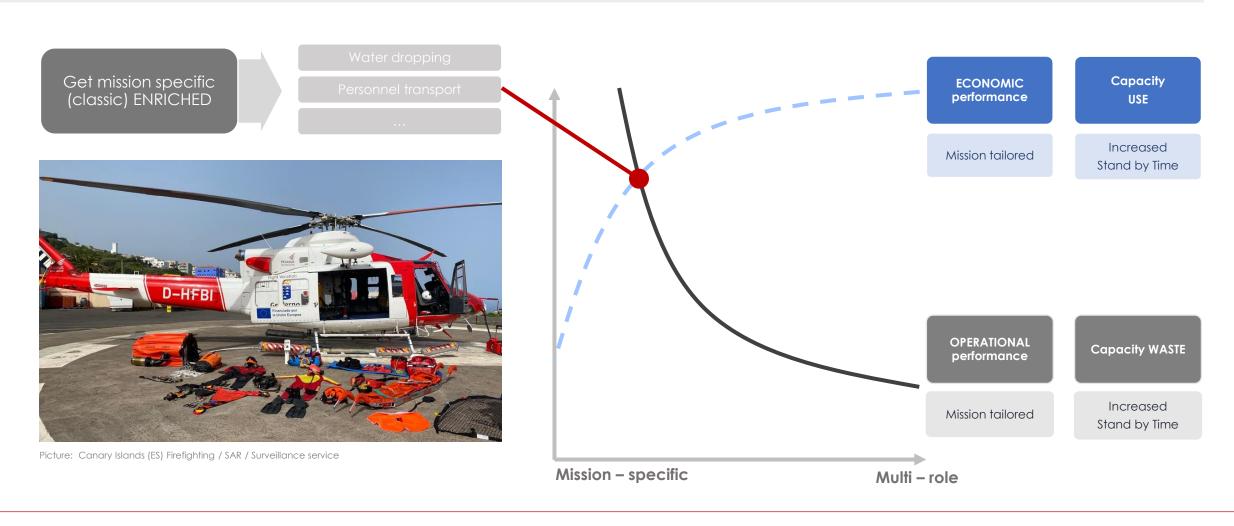

- Capacity:
 - ✓ 1.000 1,500 litres bombing ¹
 - \checkmark 5 11 airborne seats
- Available worldwide
- Large # of operators
- Easiness to operate and maintain
- Low cost of change

Technical and economically efficient for routine operations

'Special purpose' aircraft:

- Capacity:
 - \checkmark 3.000 5.000 litres bombing
 - ✓ No airborne seats
- Fewer available
- Reduced # of operators
- High cost of change

Efficient in non routine les frequient events


Source: Pegasus from ATAIRE (National Helicopters Association of Spain) data updated 2021

AIR SERVICE CONCEPT: SPECIFIC VS MULTIROLE

THE CROSSROADS OF HELICOPTER SYSTEMS DESIGN FOR EMERGENCY SUPPORT

Aerial support to emergencies can potentially benefit from synergies: how much at the expense of efficiency?

THE VISION OF AN AERIAL FIREFIGHTING OPERATOR

Pegasus stands for a public aerial firefighting service model that relies mainly on the capabilities of our industry and evolves to enriched missions aiming service quality, safety and public expenditure efficiency

Public service model	Get all benefits, operational and economic, from the experienced and capable helicopter firefighting industry
-	Keep insourced only a selected set of services part of the state backbone
Aircraft fleet mix	Design the capacity and number of aircraft according to technical requirements and budget constraints.
-	Preference for standard vs niche platforms for further efficiency and operability.
Air service concept	Evolve from pure specific mission fit to an enriched mission concept
-	(Limited) rescue, surveillance, basic medica evacuation, capabilities, etc.

Carlos Ábrego – Aguilar Chief Strategy Officer

Isabel Vázquez Garrido
MsC Wildfire Management

