

0033 **Light Transmission of Different Dental Composite Resins** S. Caglar¹, A. Cetin¹, S. Ulku² ¹Restorative Dentistry, Selcuk University, Konya, Turkey, ²Meram Oral and Dental Health Center, Konya, Turkey

Objectives This study aims to analyze light transmittance of three different dental composites in various thicknesses to investigate how power of light sources influences the penetration.

Methods A total of 216 samples were fabricated from IPS Empress Direct (IPS), Lava Ultimate (LU), and Neo Spectra ST (NST) materials in three thicknesses (1 mm, 2 mm, 3 mm; n = 12/group) and cured using Valo and high power (HP) D-Light Pro light-curing devices. The light transmittance of the materials was measured with a spectrometer. Statistical analysis was performed using one-way ANOVA and post-hoc tests. **Results** Samples with a thickness of 1 mm demonstrated significantly higher light transmittance compared to those with thicknesses of 2 and 3 mm within each material group. Samples with 1 mm thickness cured with HP showed light transmittance similar to 2 mm thick samples cured with Valo in the IPS group. Similar light transmittance was observed for samples with thicknesses of 2 and 3 mm across all materials and lightcuring devices. The highest light transmittance was observed in 1 mm IPS samples, while the lowest was in 3 mm NST samples, in both light-curing devices. Additionally, 1 mm IPS samples polymerized with Valo showed significantly higher light transmittance compared to 2 and 3 mm NST and LU samples polymerized with both light devices. **Conclusions** Light transmission in resin-composites is significantly influenced by thickness and curing device. Thinner samples generally exhibit higher transmittance with notable variations among materials and curing methods. Optimal transmittance was observed in 1 mm IPS samples, emphasizing the importance of thickness control for desired aesthetic outcomes.