

0326

Performance Assessment of Speed-Sintered Multigrade Monolithic Zirconia Ceramics

S. Čokić², B. Van Meerbeek², J. Vleugels¹, F. Zhang^{2, 1}

¹Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium, ²BIOMAT - Department of Oral Health Sciences, KU Leuven, Leuven, Belgium

Objectives To evaluate the performance of speed-sintered multigrade monolithic zirconia through a comprehensive analysis of its microstructure, optical and mechanical properties.

Methods Speed-sintered multigrade 4Y/5Y-PSZ ZirCAD MT Multi (Ivoclar) (total thermal cycle: 60 min) was compared to 4Y-PSZ Katana HT (total thermal cycle/sintering time/dwell temperature: 90min/30min/1515 °C) and 5Y-PSZ Katana STML (Kuraray Noritake) (90min/30 min/1560 °C). Density was determined according to the Archimedes principle; chemical composition was determined using X-ray fluorescence; phase composition was characterized using X-ray diffraction; grain size was measured using scanning electron microscopy; Translucency Parameter was measured with a spectrophotometer. Vickers hardness, indentation fracture toughness and biaxial strength were also assessed. Layers of polychromatic zirconia was evaluated by light microscopy and nanoSEM-EDX. Statistical analysis involved one-way ANOVA and posthoc Tukey's HSD test (α=0.05).

Results All zirconia grades showed similar density (\approx 6.02±0.01 g/cm³). ZirCAD MT Multi was characterized by three distinct layers, each with different phase compositions. 5Y-PSZ layer contained the highest amount of Y₂O₃ in the remaining tetragonal ZrO₂ phases (5.4 mol%) compared the transition and the 4Y-PSZ layer (4.6 mol% and 3.5 mol%, respectively). The grain size between the 4Y-PSZ layer and Katana HT was similar (\approx 0.3 µm), while the 5Y-PSZ layer had a smaller grain size (0.9 µm) compared to Katana STML (1.2 µm). Transition layer revealed the presence of agglomerates consisting of small grains, higher Y₂O₃ content and presence of Er. No statistical difference in hardness was observed. Toughness of 4Y-PSZ layer (3.7 MPa m^{1/2}) was significantly higher compared to Katana HT and STML, respectively. ZirCAD Multi MT showed significantly lower biaxial strength compared to Katana HT (548.6±63.9), but demonstrated the highest mechanical reliability (m=11).

Conclusions Multigrade 4Y/5Y-PSZ zirconia showed similar density, microstructure, translucency and hardness compared to monograde zirconia. However, further studies should focus on improvement of flexural strength of speed-sintered multigrade zirconia.