

0236

Gingival Keratinocyte Adhesion on Atomic Layer-Deposited Hydroxyapatite Coated Titanium

F. A. Abushahba^{1, 2}, S. Riivari¹, N. Areid¹, E. Närva³, E. Kylmäoja⁴, J. Holopainen⁵, M. Ritala⁵, J. Tuukkanen⁴, P. Vallittu², T. Narhi^{1, 6}

¹Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland, ²Department of Biomaterials Science and Turku Clinical Biomaterial Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland, ³Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland, University of Turku, Turku, Finland, ⁴Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland, ⁵Department of Chemistry, University of Helsinki, University of Helsinki, Helsinki, Finland, ⁶Oral Health Care, Wellbeing services county of Southwest Finland, University of Turku, Turku, Finland

Objectives The aim of this study was to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating on human gingival keratinocyte (HGK) adhesion, spreading, growth, and hemidesmosome formation on the titanium surface.

Methods Grade 2 square-shaped titanium substrates were prepared (n=62). The HA coating was done by first depositing with ALD CaCO3, which was hydrothermally converted to HA. Half the substrates were ALD-HA coated, while the other half was used as non-coated control (NC). The ALD-HA coating underwent surface characterization through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and hemidesmosome formation of HGKs were evaluated after a 24-hour cultivation period. The cell proliferation was detected by cultivating cells for 1, 3 and 7 days. In addition, the levels of adhesion proteins integrin α 6 and β 4 were detected with the Western Blot method. Furthermore, high resolution imaging of cell areas and adhesion protein signals was established using a confocal microscope.

Results SEM-EDS analysis demonstrated the formation of HA crystals on the ALD-HA surfaces. The relative cell attachment was significantly higher (p< 0.05) on the ALD-HA surface compared to NC after 1 and 3 days of cell culture. No significant difference was found in integrin α 6 or β 4 expression. The microscope evaluation showed significantly wider cells with peripheral hemidesmosome expression on ALD-HA surfaces compared to the NC (p= 0.0001). The signal of laminin γ 2 on the cell bottom layer was significantly higher on ALD-HA-coated surfaces compared to NC (p< 0.001).

Conclusions Based on the findings of this in vitro study, the ALD-HA coating enhances the attachment of HGKs and promotes the expression of adhesion proteins on coated titanium surfaces. The results of this study indicate that ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.