

0095

Glass-Hybrid Cement Adhere Better Than Glass-Ionomer Materials to Primary Dentine

T. Peric¹, V. Kosutic¹, J. Vulovic¹, S. Kojic², L. Milic², J. Kuzmanovic Pficer¹, A. Racic¹, B. Petrovic³, E. Markovic¹

¹University of Belgrade, School of Dental Medicine, Belgrade, Serbia, ²University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia, ³University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia

Objectives The aim of the study was to analyze the interface zone between sound (SD) and caries-affected (CAD) primary dentin, and three types of restorative materials: glass-hybrid (GH), conventional (C-), and resin-modified (RM-) glass ionomer cements (GIC).

Methods Occlusal cavities were prepared in 120 extracted primary molars, and randomly divided into two groups: SD and CAD. After formation of the artificial caries lesion, teeth (n=12) were restored with a GH (Equia Forte HT, GC Int- EF), two C-GIC (Equia Fill, GC Int- E; Ketac Molar, 3M ESPE- KM), and two RM-GIC (Fuji II LC, GC Int- II, Photac Fill, 3M ESPE- PF). Samples were immersed in artificial saliva at 37°C for 7 days, and subsequently exposed to thermal aging (10.000×). Sectioning of teeth was done in the occluso-gingival direction, and the interface between dental tissues and restorative materials was analyzed using a scanning electron (SE) microscope. The developed algorithm used for SE microphotographs analysis was done in the Python programming language.

Results Intimate contact of the material and dental tissues along the entire interface was not observed. In the C-GIC group, a crack along the entire interface was observed in 33% of SD, and 25% of CAD samples. The mean proportion of intimate contact between the material and SD was EF (76%) > KM (55%) > E (38%) > II (7%) > PF (4%), and EF (32%) > KM (24%) > E (16%) > II (15%) > PF (0%) for CAD (p<0.05, Kruskal-Wallis test). GHC showed significantly better adherence to SD than to CAD (p<0.05, Mann-Whitney test). **Conclusions** Caries-induced demineralization of hard dental tissues affects the quality of GHC/ and GIC/CAD dentin interface. When compared to C- and RM-GIC, GHC shows better seal of primary dentin.