

0322

Water Presence Impacts the Fracture Behavior of Lithium Disilicate Y. Lu¹, A. d. Dal Piva¹, J. M. Tribst², J. Kodolányi¹, C. J. Kleverlaan¹, A. J. Feilzer^{1, 2} ¹Dental Materials Science, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands, ²Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands

Objectives To investigate the influence of water storage and presence during mechanical testing on the flexural strength and fatigue behavior of a lithium disilicate glass-ceramic.

Methods Ninety bar-shaped specimens (1.0 mm x 1.0 mm x 12.0 mm) were cut from Advanced Lithium Disilicate (CEREC Tessera; Dentsply Sirona) under water cooling using a precision cutting machine. They were subsequently polished and fired according to the manufacturer-recommended protocol. Half of the specimens were stored in deionized water (W) at 37 °C for 30 days, while the other specimens stayed dry (D) for the same period. A 3-point bending test (n=15) was carried out in a dry (d) or wet (w) testing environment to determine flexural strength. A stepwise fatigue test was conducted using the same bending set-up for dry-stored specimens in a dry environment (Dd) and wet-stored specimens in a wet environment (Ww).

Results Results: For flexural strength, two-way analyses of variance showed a significant influence of the testing environment (P<0.001), while there was no significant effect for the storage environment (P=0.054) and the interaction of factors (P=0.140). Regardless of storage, testing in water generated a lower flexural strength (Dw: 242.52 ± 35.18^{B} MPa; Ww: 249.53 ± 57.30^{B} MPa) than in dry environment (Dd: 323.75 ± 73.87^{A} MPa; Wd: 375.87 ± 60.04^{A} MPa). However, wet storage combined with a wet testing environment exhibited similar fatigue strength (Ww: 151.78 ± 38.75 MPa) to the group without water intervention (Dd: 148.14 ± 35.57 MPa).

Conclusions Conclusion: Storage in 37 °C water for 30 days does not decrease the flexural strength of the evaluated lithium disilicate, while the wet testing environment degraded around 30% of the material's strength. The fatigue protocol in this study resulted in about 50% of the initial strength, whereas the wet storage and testing environment did not affect the fatigue strength.