

0371

Composite-Cement, Abutment-Chimney-Height and Surface-Treatment Affect the Bond-Strength of the Polyetheretherketone-Abutment-Interface

A. Schedle, T. Vaskovich, S. Schmiedehausen, R. Ahmadyar, S. Lettner, A. Moritz, A. Franz

University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria

Objectives The aim of the present study was to investigate whether (i) the brand of composite-cement, (ii) the chimney height and (iii) different surface-treatments of the polyetheretherketone crowns affect the bond-strength of the polyetheretherketone crown-abutment interfaces.

Methods 480 screw-fixed polyetheretherketone (PEEK) crowns with different chimney heights (3.5 mm and 5.5 mm) were fabricated by CAD/CAM technology and attached to the titanium abutments with three composite-cement brands (DTK-adhesive/visio.link-Primer for PEEK, MKZ-Primer for abutment [DTK], Bredent; PanaviaV5/Clearfil-Ceramic-Primer-Plus [Panavia], Kuraray Dental; G-Cem-LinkForce/G-Multi Primer [G-Cem], GC). Surfaces of the PEEK crowns were pretreated with 4 different methods (1) aluminium oxide (250 μ , 4 bar) [Al₂O₃], (2) aluminium oxide (250 μ , 4 bar) and macro-retentions [Al₂O₃+MR], (3) aluminium oxide (250 μ , 4 bar) and Dialog bonding fluid (Schütz Dental) [Al₂O₃+DBF] instead of the primers belonging to the composite-cement brands or (4) Rocatec plus (110 μ , 2,5 bar) [ROC]. This resulted in a total of 24 groups of 20 test specimens each. Before measurements test specimens were stored in distilled water at 37°C for at least 24 hours. Bond strength (tensile test) was determined with a universal testing machine (Zwick/Roell). Data were analysed using ANOVA statistics. **Results** The composite-cement brands had a significant effect on the bond-strength of the PEEK-abutment interface (DTK: 192±103 N; G-Cem: 166±90 N; Panavia: 75±72 N;

p<0.001, Figure 1). The influence of the different chimney heights on the bond-strength (5.5mm: 168±111 N; 3.5mm: 122±86 N; p<0.001, Figure2) was also significant as well as the surface treatment (Al_2O_3 +MR: 202±99 N; ROC: 149±118 N; Al_2O_3 : 124±94 N; p<0.001, Figure 3). Al_2O_3 +DBF was not significantly different from Al_2O_3 alone. **Conclusions** Increasing the bonding area (i.e. increasing the chimney height from 3.5mm to 5.5mm) increased the bond strength of the PEEK crown-abutment interface. PEEK test specimens with macroretentions achieved the highest bond strengths in combination with the cements DTK followed by G-Cem.