

## 0148

**Dental Composite With Silanized Nanofiller Providing Anti-Bacterial Potential** C. Yao<sup>1, 2</sup>, L. Etiennot<sup>1</sup>, N. Zayed<sup>3</sup>, M. Turkalj<sup>1</sup>, M. Saghi<sup>3</sup>, F. Zhang<sup>1, 4</sup>, W. Teughels<sup>3</sup>, K. L. Van Landuyt<sup>1</sup>, B. Van Meerbeek<sup>1</sup>

<sup>1</sup>KU Leuven, Department of Oral Health Sciences, Biomaterials - BIOMAT, Leuven, Belgium, <sup>2</sup>Wuhan University, Ministry of Education Hubei Key Laboratory of Stomatology School & Hospital of Stomatology, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration Key Laboratory of Oral Biomedicine, Wuhan, China, <sup>3</sup>KU Leuven, Department of Oral Health Sciences, Periodontology & Oral Microbiology, Leuven, Belgium, <sup>4</sup>KU Leuven, Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Leuven, Belgium

Objectives Although dental composite is routinely used in daily dental practice, composite restorations have a relatively short lifespan and are vulnerable to caries recurrence. This study aimed to design and prepare experimental composites with anti-bacterial potential based on nanoparticles that can release antibacterial molecules upon gradual surface wear. **Methods** Large-pore mesoporous silica (MSN-SiO<sub>2</sub>) was loaded with the antibacterial agent cetylpyridinium chloride (CPC). Non-silanized nanoparticles and nanoparticles silanized with two silane bifunctional monomers (dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride; 3-(trimethoxysilyl)propyl methacrylate), being referred to as CPC@MSN-SiO<sub>2</sub> and S\_CPC@MSN-SiO<sub>2</sub>, were investigated by micro-Raman spectroscopy (µRaman) and powder X-ray diffraction (XRD). To determine surface area and volume of the nanoparticles,  $N_2$  adsorption-desorption isotherms were collected by a gas adsorption analyzer. Thermogravimetric analysis (TGA) was used to determine CPC-loading and nanoparticlesilanization degree. Different concentrations (0-20wt%) of CPC@MSN-SiO<sub>2</sub> and S\_CPC@MSN-SiO<sub>2</sub> were added to conventional silanized barium-borosilicate glass filler, prior to being mixed into an existing experimental BisGMA/TEGDMA resin-matrix formulation to achieve a final 70wt% filler loading. Multi-species oral biofilms were grown on experimental composite discs for 24h and 96h, upon which the bacterial viability was analyzed by qPCR. Flexural strength was measured using four-point bending.

**Results**  $\mu$ Raman/XRD confirmed successful CPC-loading of MSN-SiO<sub>2</sub>, as was confirmed by detection of the CPC-specific pyridine-ring. Weight loss due to decomposition of organic substances of about 18.2wt% for CPC and 3wt% for silane was recorded by TGA. qPCR showed significant inhibitory effects of experimental composites incorporating 20wt% S\_CPC@MSN-SiO<sub>2</sub> on *S. mutans* and *S. Sobrinus*. No significant difference in flexural strength between a 20wt% S\_CPC@MSN-SiO<sub>2</sub> and control (containing pure 70wt% bariumborosilicate glass filler) composite was recorded.

**Conclusions** The developed experimental composites incorporating novel functional  $S_CPC@MSN-SiO_2$  nanofiller revealed promising antibacterial potential against cariogenic bacteria, which could extend the clinical lifespan of adhesive composite restorations.