

A Threshold-Based Random Forest Forecasting Model For The Outer Radiation Belt

D.J.Weston¹, I.J.Rae¹, A.W.Smith¹, K.R.Murphy^{1,2}, C.E.J.Watt¹, FX.Bocquet³, S.Bingham³, E.M.Henley³ ¹Department of Mathematics, Physics and Electric Engineering, Northumbria University, Newcastle-Upon-Tyne, UK ²Department of Physics, Lakehead University, Thunder Bay, ON, Canada ³The Met Office, Exeter, UK

Low number of

No solar wind or

coupling functions

selected; Only AL

Does not require the

current state of the

AL from 3 days prior

Belts to forecast

clearly the most

important input

place more

Higher thresholds

importance more

recent information

needed for all

models

inputs to each

model (≤6)

dylan.weston@northumbria.ac.uk

https://github.com/D-J-Weston/RadiationBeltForecasting

1. New Thresholds

- MOSWOC and NOAA SWPC issue flux alerts when >2MeV flux at GOES exceeds 1000pfu (Forsyth et al., 2020)
- Outer Radiation Belt fluxes far higher than 1000pfu
- Aim to create a suite of models that nowcast and forecast the ORB with more realistic thresholds
- Assess model performance for
 - 60th Percentile
 - 70th Percentile 80th Percentile
 - 90th Percentile
 - 95th Percentile

2. The VAMPIRE Model

3. Nowcasting Performance

4. Model Inputs

5. Forecasting longer lead times

- All models display **excellent performance for ≤ 2** days lead times
- Low errors (~0.02 or lower)
- X60, X70, X80, X90 all have some skill for \leq 6 days
- X90 and X95 have lower and no skill for 5–6-day lead times, demonstrating that extreme flux spikes need a more recent time history

6. Conclusions

- VAMPIRE is a simple random forest model to forecast the state of the Outer Radiation Belt with good levels of accuracy over many different flux thresholds
- Each model requires only AL as an input, demonstrating that solar wind data is not required for accurate radiation belt forecasts
- All models show good skill up to 2 days in advance, and most up to 6 days in advance
- More extreme thresholds e.g., X95 show no skill at predicting flux for 5+ day lead times, suggesting that these thresholds are only crossed briefly and require a shorter lead time input

7. Future Work

- Split ORB forecasts by location as a function of satellite orbit or L* – currently issuing one forecast for the entire belt
- Aim to extend the lead time further than 6 days

References

VAMPIRE Pre-Print