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Figure 2 Cuts of the ionospheric potential for (a-b) one and (c-e) several inputs, and
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Ground magnetic field Vagnetosphere
» Ground magnetic field perturbations of ~100’s nT (Figure 3) varying qualitatively like Amp=aexp(bk)+CAmp“tUde
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Geoelectric field
» GICs typically considered only for high frequencies. However, model shows ~mHz
surface waves result in significant geoelectric fields ~1000’s mV/m (Figure 5a-b).

Figure 4 Amplitude and scale of ground magnetic field from Ml current systems with wavelength

* Amplitudes greatest for large-scale waves, exponentially decaying with wavenumber ~ _ E, Amplitude (x=y=0, o_ = 0) E, Half Width at Half Maximum (y=0)
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magnetic field, but still highly localised to OCB (Figure 5d). ~ 10°¢ > mHz
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Figure 5 Amplitude and scale of geoelectric field with wavelength for ground conductivity limits



